Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 124, Issue 2, pp 675–682 | Cite as

Glass transition and crystallization kinetics of Se98−xCd2Inx (x = 0, 2, 6 and 10) glassy alloys

  • Sunil Kumar
  • Kedar SinghEmail author
Article

Abstract

The calorimetric parameters of glassy Se98−xCd2Inx (x = 0, 2, 6 and 10) alloys were investigated using differential scanning calorimetry (DSC) under non-isothermal conditions at different heating rates of 5, 10, 15 and 20 K min−1. The composition dependencies of activation energy of glass transitions (E g), crystallization activation energy (E c), fragility index (F), Hruby number (K gl) and rate constant (K p) were evaluated from DSC curves. Results indicate that kinetic parameter varies with In content in Cd–Se glassy matrix. It is observed that crystallization activation energy (E c) and K p are minimum and K gl is maximum for Se92Cd2In6 glass. Therefore, Se92Cd2In6 glass is the most thermally stable glass and has highest glass-forming ability in this series. It can be explained by chemical bond theory of solids.

Keywords

Differential scanning calorimetric Glass transition activation energy Fragility index Hruby number Rate constant 

Notes

Acknowledgements

We wish to thank UGC, New Delhi, for providing financial assistance under the project grant UGC Project No. 42-812/2013(SR). We also wish to express our thanks to Professor O.N. Srivastava, Department of Physics, BHU, for XRD measurements.

References

  1. 1.
    Wagner T, Frumar M, Suskova V. Photoenhanced dissolution and lateral diffusion of Ag in amorphous As–S layers. J Non-Cryst Solids. 1991;128:197–207.CrossRefGoogle Scholar
  2. 2.
    Ramesh K, Asokan S, Sangunni KS, Gopal ESR. Glass formation in germanium telluride glasses containing metallic additives. J Phys Chem Solids. 2000;61:95–101.CrossRefGoogle Scholar
  3. 3.
    Upadhyay AN, Tiwari RS, Mehta N, Singh K. Enhancement of electrical, thermal and mechanical properties of carbon nanotube additive Se85Te10Ag5 glassy composites. Mater Lett. 2014;136:445–8.CrossRefGoogle Scholar
  4. 4.
    Elliot SR. Physics of amorphous materials. 2nd ed. London: Longman; 1991.Google Scholar
  5. 5.
    Asobe M. Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching. Opt Fiber Technol. 1997;3:142–8.CrossRefGoogle Scholar
  6. 6.
    Fugimori S, Yagi S, Yamzaki H, Funakosky N. Crystallization process of Sb–Te alloy films for optical storage. J Appl Phys. 1988;64:1000–4.CrossRefGoogle Scholar
  7. 7.
    Katsuyama T, Satoh S, Atsumura HM. Scattering loss characteristics of selenide-based chogenide glass optical fibers. J Appl Phys. 1992;71:4132–6.CrossRefGoogle Scholar
  8. 8.
    Weszka J, Daniel P, Burian A, Burian AM, Nguyen AT. Raman scattering in In2Se3 and InSe2 amorphous films. J Non-Cryst Solids. 2000;265:98–104.CrossRefGoogle Scholar
  9. 9.
    Ram IS, Singh RK, Singh P, Singh K. Effect of Pb addition on dielectric relaxation in Se80In20 glassy system. J Alloy Compd. 2013;552:480–5.CrossRefGoogle Scholar
  10. 10.
    Wagner T, Frumar M. Optically induced diffusion and dissolution of metals in amorphous chalcogenide. In: Kolobov AV, editor. Photo induced metastability in amorphous semiconductors. Berlin: Wiley-VCH; 2003. p. 196–216.Google Scholar
  11. 11.
    Rajpure KY, Anarase PA, Lokhande CD, Bhosale CH. Photoelectrochemical studies on electrodeposited Cd–Fe–Se thin films. Phys Status Solidi A. 1999;172:415–23.CrossRefGoogle Scholar
  12. 12.
    Dhumure SS, Loknande CD. Studies on photoelectrochemical storage cells formed with chemically deposited CdSe and Ag2S electrodes. Sol Energy Mater Sol Cells. 1993;29:183–94.CrossRefGoogle Scholar
  13. 13.
    Froment M, Cachet H, Essaaidi H, Maurin G, Cortes R. Metal chalcogenide semiconductors growth from aqueous solutions. Pure Appl Chem. 1997;69:77–82.CrossRefGoogle Scholar
  14. 14.
    Jin W, Zhang K, Gao Z, Li Y, Yao L, Wang Y, Dai L. CdSe nanowire-based flexible devices: Schottky diodes, metal–semiconductor field-effect transistors, and inverters. ACS Appl Mater Interfaces. 2015;7:13131–6.CrossRefGoogle Scholar
  15. 15.
    Svoboda R, Brandová D, Málek J. Non-isothermal crystallization kinetics of GeTe4 infrared glass. J Therm Anal Calorim. 2015;. doi: 10.1007/s10973-015-4937-x.Google Scholar
  16. 16.
    Svoboda R, Málek J. Crystallization mechanisms occurring in the Se–Te glassy system. J Therm Anal Calorim. 2015;119:155–66.CrossRefGoogle Scholar
  17. 17.
    Naqvi SF, Saxena NS. Kinetics of phase transition and thermal stability in Se80−xTe20Znx (x = 2, 4, 6, 8, and 10) glasses. J Therm Anal Calorim. 2012;108:1161–9.CrossRefGoogle Scholar
  18. 18.
    Heireche MM, Belhadji M, Hakiki NE. Non-isothermal crystallisation kinetics study on Se90-xIn10Sbx (x = 0, 1, 2, 4, 5) chalcogenide glasses. J Therm Anal Calorim. 2013;114(195):203.Google Scholar
  19. 19.
    Mahadevan S, Giridhar A, Singh AK. Calorimetric measurements on As–Sb–Se glasses. J Non-Cryst Solids. 1988;88:11–34.CrossRefGoogle Scholar
  20. 20.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  21. 21.
    Othman AA, Aly KA, Abousehly AM. Glass transition and crystallization kinetics of Sb14.5As29.5Se53.5Te2.5 amorphous solid. Phys Status Solidi (a). 2006;203:837–43.CrossRefGoogle Scholar
  22. 22.
    Strink MJ, Zahra AM. Determination of the transformation exponent s from experiments at constant heating rate. Thermochim Acta. 1997;298:179–89.CrossRefGoogle Scholar
  23. 23.
    Kumar S, Singh K. Glass transition, thermal stability and glass-forming tendency of Se90−xTe5Sn5Inx multi-component chalcogenide glasses. J Thermochimica Acta. 2012;528:32–7.CrossRefGoogle Scholar
  24. 24.
    Das GC, Bever MB, Uhlmann DR. Relaxation phenomena in amorphous selenium-tellurium alloys. J Non-Cryst Solids. 1972;7:251–70.CrossRefGoogle Scholar
  25. 25.
    El-Mously MK, El-Zaidia MM. Thermal and electrical conductivities during the devitrification of TeSe12.5 amorphous alloy. J Non-Cryst Solids. 1978;27:265–71.CrossRefGoogle Scholar
  26. 26.
    Abkovitz MA. In: Gerlach E, Grosse P, editors. The physics of Se and Te. Berlin: Springer; 1979. p. 178.Google Scholar
  27. 27.
    Kotkata MF, El-Mousl MK. A survey of amorphous Se–Te semiconductors and their characteristics aspects of crystallization. Acta Phys Hung. 1983;54:303–12.Google Scholar
  28. 28.
    Weiser K, Gambino RJ, Reinhold JA. Laser-beam writing on amorphous chalcogenide films: crystallization kinetics and analysis of amorphizing energy. Appl Phys Lett. 1973;22:48–9.CrossRefGoogle Scholar
  29. 29.
    Hruby A. Evaluation of glass-forming tendency by means of DTA. Czech J Phys B. 1972;22:1187–93.CrossRefGoogle Scholar
  30. 30.
    Kumar S, Singh K, Mehta N. Calorimetric studies of the glass transition phenomenon in glassy Se75Te15−xCd10Inx alloys using the non-isothermal DSC technique. Phys Scr. 2010;82:045601.CrossRefGoogle Scholar
  31. 31.
    Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217–21.CrossRefGoogle Scholar
  32. 32.
    Kasap SO, Yannacopoulos S. Apparent activation energy of the glass transformation in vitreous As2Se3 via heating and cooling differential scanning calorimetry scans. Phys Chem Glasses. 1990;31:71–4.Google Scholar
  33. 33.
    Abd El Ghani HA, Abd El Rahim MM, Wakkad MM, Abosehli A, Assraan N. Crystallization kinetics and thermal stability of some compositions of Ge–In–Se chalcogenide system. Phys B. 2006;381:156–63.CrossRefGoogle Scholar
  34. 34.
    Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12:150–8.CrossRefGoogle Scholar
  35. 35.
    Kauzmann W. The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev. 1948;43:219–56.CrossRefGoogle Scholar
  36. 36.
    Viglis TA. Strong and fragile glasses: a powerful classification and its consequences. Phys Rev B. 1993;47:2882–5.CrossRefGoogle Scholar
  37. 37.
    Bohmer R, Angell CA. In: Richert R, Bluman A, editors. Disorder effects on relaxation processes. Berlin: Springer; 1994. p. 11–54.CrossRefGoogle Scholar
  38. 38.
    Matusita K, Konatsu T, Yorota R. Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials. J Mater Sci. 1984;19:291–6.CrossRefGoogle Scholar
  39. 39.
    Ram IS, Singh K. Thermal and mechanical properties of CNT-Se90−xTe10Agx (x = 0, 5 and 10) glassy composites. J Alloy Compd. 2013;576:358–62.CrossRefGoogle Scholar
  40. 40.
    Ram IS, Singh K. Effect of Pb additive on crystallization kinetics of Se80In20 glassy matrix. Phys B. 2012;407:3472–8.CrossRefGoogle Scholar
  41. 41.
    Pauling L. Die Natur der Chemischen Bindung. Weinheim: VCH; 1976. p. 80–9.Google Scholar
  42. 42.
    Dwivedi DK, Shukla N, Pathak HP. Study of crystallization kinetics in Se90Cd10−xInx chalcogenide glasses. Int J Res Eng Biosci. 2015;3:30–3.Google Scholar
  43. 43.
    Gao YQ, Wang W. On the activation energy of crystallization in metallic glasses. J Non-Cryst Solids. 1986;81:129–34.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.Dr. Ram Manohar Lohiya Government Degree CollegeBareillyIndia
  2. 2.Department of PhysicsBanaras Hindu UniversityVaranasiIndia
  3. 3.School of Physical ScienceJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations