Synthesis, spectroscopic, thermal and XRD studies of aminoguanidinium copper and cadmium oxalates

Crystal structure of the copper complex

Abstract

New aminoguanidinium metal oxalate complexes with the formulae (AmgH)2[Cu(C2O4)2] and (AmgH)2[Cd(C2O4)2(H2O)2] have been synthesized and characterized. The copper compound loses aminoguanidine exothermically at 240 °C in DTA, whereas aminoguanidine is lost endothermically at 200 °C in cadmium. Both cases decompose exothermically via their respective metal oxalate intermediates to give metal oxide as the end product. It was also observed that hydrazine is lost exothermically in the hydrazinium copper oxalate hydrate. The single-crystal X-ray diffraction study of the copper complex revealed that aminoguanidinium ions are not involved in coordination but act as charge-compensating cations. It is interesting to note that both oxalates act as bidentate chelating ligands. One oxalate bridges the neighbouring copper atom through its carbonyl oxygen with a bond length of 2.561 Å to form square pyramidal geometry around the copper atom.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Armentano D, Munno G-De, Lloret F, Palii AV, Julve M. Novel chiral three-dimensional iron(III) compound exhibiting magnetic ordering at Tc = 40 K. Inorg Chem. 2002;41:2007–13.

    CAS  Article  Google Scholar 

  2. 2.

    Song J-L, Mao J-G. New types of blue, red or near IR luminescent phosphonate-decorated lanthanide oxalates. Chem Eur J. 2005;11:1417–24.

    CAS  Article  Google Scholar 

  3. 3.

    Salami TO, Marouchkin K, Zavilliji PY, Oliver SRJ. Three low-dimensional tin oxalate and tin phosphate materials: BING-4, -7, and -8. Chem Mater. 2002;14:4851–7.

    CAS  Article  Google Scholar 

  4. 4.

    Vaithiyanathan R, Natarajan S, Rao CNR. Synthesis of a hierarchy of zinc oxalate structures from amine oxalates. J Chem Soc Dalton Trans. 2001;5:699–706.

    Article  Google Scholar 

  5. 5.

    Vaithianathan R, Natarajan S, Cheetham AK, Rao CNR. New open-framework zinc oxalates synthesized in the presence of structure-directing organic amines. Chem Mater. 1999;11:3636–42.

    Article  Google Scholar 

  6. 6.

    Natarajan S, Vaithianathan R, Rao CNR, Ayyappan S, Cheetham AK. Layered tin(II) oxalates possessing large apertures. Chem Mater. 1999;11:1633–9.

    CAS  Article  Google Scholar 

  7. 7.

    Ayyappan S, Cheetham AK, Natarajan S, Rao CNR. Tin(II) oxalates synthesized in the presence of structure-directing organic amines: members of a potentially vast class of new open-framework and related materials. Chem Mater. 1998;10:3746–55.

    CAS  Article  Google Scholar 

  8. 8.

    Novosad J, Messimeri AC, Papadimitriou CD, Veltsistas PG, Woollins JD. Copper(II) oxalate and oxamate complexes. Transit Metal Chem. 2000;25:664–9.

    CAS  Article  Google Scholar 

  9. 9.

    Cai J, Zhang Y, Hu X, Feng X. Tris(ethylenediamine-N, N′)cobalt(III) oxalate perchlorate dehydrate. Acta Crystallogr. 2000;C56:661–3.

    CAS  Google Scholar 

  10. 10.

    Gajapathy D, Govindarajan S, Patil KC, Manohar H. Synthesis, characterisation and thermal properties of hydrazinium metal oxalate hydrates: crystal and molecular structure of hydrazinium copper oxalate monohydrate. Polyhedron. 1983;2:865–73.

    CAS  Article  Google Scholar 

  11. 11.

    Keene TD, Ogilvie HR, Hursthouse MB, Price DJ. One-dimensional magnetism in new, layered structures: piperazine-linked copper and nickel oxalate chains. Eur J Inorg Chem. 2004;5:1007–13.

    Article  Google Scholar 

  12. 12.

    Keene TD, Hursthouse MB, Price DJ. Stabilization of discrete [Cu(C2O4)2(H2O)2]2— dianions in the solid state by an extensive hydrogen bonded network. Z Anorg Allg Chem. 2004;630:350–2.

    CAS  Article  Google Scholar 

  13. 13.

    Bloomquist DR, Hansey JJ, Landee CP, Willett RD, Buder R. Structure and magnetic properties of two two-dimensional copper oxalates: bis(benzylammonium) bis(oxalato)cuprate(II) and propylenediammonium bis(oxalato)cuprate(II). Inorg Chem. 1981;20:3308–14.

    CAS  Article  Google Scholar 

  14. 14.

    Golic L, Bulc N. Structure of guanidinium tris(oxalato)chromate(III) monohydrate. Acta Crystallogr. 1988;C44:2065–8.

    CAS  Google Scholar 

  15. 15.

    Gajapathy D, Patil KC. Mixed metal oxalate hydrazinates as compound precursors to spinel ferrites. Mater Chem Phys. 1983;9:423–38.

    CAS  Article  Google Scholar 

  16. 16.

    Patil KC, Gajapathy D, Pai Verneker VR. Low temperature cobaltite formation using mixed metal oxalate hydrazinate precursor. J Mater Sci Lett. 1983;2:272–4.

    CAS  Article  Google Scholar 

  17. 17.

    Yasodhai S, Govindarajan S. Preparation and thermal behaviour of some hydrazinium dicarboxylates. Thermochim Acta. 1999;338:113–23.

    CAS  Article  Google Scholar 

  18. 18.

    Yasodhai S, Govindarajan S. Hydrazinium oxydiacetates and oxydiacetate dianion complexes of some divalent metals with hydrazine. J Therm Anal Calorim. 2000;62:737–45.

    CAS  Article  Google Scholar 

  19. 19.

    Kuppusamy K, Sivasankar BN, Govindarajan S. Preparation, characterisation and thermal properties of some new hydrazinium carboxylates. Thermochim Acta. 1995;259:251–62.

    CAS  Article  Google Scholar 

  20. 20.

    Vairam S, Govindarajan S. New hydrazinium salts of benzene tricarboxylic and tetracarboxylic acids—preparation and their thermal studies. Thermochim Acta. 2004;414:263–70.

    CAS  Article  Google Scholar 

  21. 21.

    Premkumar T, Govindarajan S. Transition metal complexes of pyrazinecarboxylic acids with neutral hydrazine as a ligand. J Therm Anal Calorim. 2005;79:115–21.

    CAS  Article  Google Scholar 

  22. 22.

    Premkumar T, Govindarajan S. The chemistry of hydrazine derivatives—thermal behavior and characterisation of hydrazinium salts and metal hydrazine complexes of 4, 5-imidazoledicarboxylic acid. Thermochim Acta. 2002;386:35–42.

    CAS  Article  Google Scholar 

  23. 23.

    Premkumar T, Govindarajan S. Divalent transition metal complexes of 3, 5-pyrazoledicarboxylate. J Therm Anal Calorim. 2006;84:395–9.

    CAS  Article  Google Scholar 

  24. 24.

    Saravanan K, Govindarajan S. Preparation and thermal reactivity of hydrazinium 2, n-pyridinedicarboxylates (n = 3, 4, 5 and 6). J Therm Anal Calorim. 2003;73:951–9.

    CAS  Article  Google Scholar 

  25. 25.

    Saravanan K, Govindarajan S. Dipicolinate complexes of main group metals with hydrazinium cation. Proc Indian Acad Sci (Chem Sci). 2005;114:25–36.

    Article  Google Scholar 

  26. 26.

    Premkumar T, Govindarajan S. Thermoanalytical and spectral properties of new rare-earth metal 2-pyrazinecarboxylate hydrates. J Therm Anal Calorim. 2005;79:685–9.

    CAS  Article  Google Scholar 

  27. 27.

    Premkumar T, Govindarajan S, Xie R, Pan W-P. Preparation and thermal behaviour of transition metal complexes of 4, 5-imidazoledicarboxylic acid. J Therm Anal Calorim. 2003;74:325–33.

    CAS  Article  Google Scholar 

  28. 28.

    Yasodhai S, Govindarajan S. Hexavalent uranium dicarboxylates with hydrazine. Preparation, characterization and thermal studies. J Therm Anal Calorim. 2002;67:679–88.

    CAS  Article  Google Scholar 

  29. 29.

    Yasodhai S, Govindarajan S. Hydrazinium oxydiacetates and oxydiacetate dianion complexes of some divalent metals with hydrazine. J Therm Anal Calorim. 2000;62:737–45.

    CAS  Article  Google Scholar 

  30. 30.

    Premkumar T, Govindarajan S. Thermoanalytical and spectroscopic studies on hydrazinium lighter lanthanide complexes of 2-pyrazinecarboxylic acid. J Therm Anal Calorim. 2010;100:725–32.

    CAS  Article  Google Scholar 

  31. 31.

    Aitken DJ, Albinati A, Gautier A, Husson HP, Morgant G, Nguyen-Huy D, Jiri K, Lemoine P, Ongeri S, Rizzato S, Viossat B. Platinum(II) and palladium(II) complexes with N-aminoguanidine. Eur J Inorg Chem. 2007;21:3327–34.

    Article  Google Scholar 

  32. 32.

    Jeffery GH, Bassett J, Mendham J, Denny RC “Vogel’s Textbook of Quantitative Chemical Analysis”, 5th Ed.,1986.

  33. 33.

    Vogel AI. A text book of quantitative inorganic analysis. 4th ed. London: Longman; 1986.

    Google Scholar 

  34. 34.

    Sheldrick GM, SHELXTL, version 6.10; Bruker analytical X-ray systems, Madison, WI, 2001.

  35. 35.

    Ross CR II, Bauer MR, Nielson RM, Abraham SC. Aminoguanidinium(1+) pentafluorozirconate: multiple redetermination and comparisons. Acta Crystallogr. 2002;B58:841–8.

    CAS  Article  Google Scholar 

  36. 36.

    Romanenko GV, Savelyeva ZA, Podberezskaya NV, Alekseev VI, Larionov SV. Aminoguanidinium cations and the square-bipyramidal hexachlorocuprate(II) anion in the (CH8N4 )2[CuCl6 ] crystal structure. J Struct Chem. 1994;35:317–23.

    Article  Google Scholar 

  37. 37.

    Roy S, Mitra P, Patra AK. Cu(II) complexes with square pyramidal (N2S)CuCl2 chromophore: Jahn-Teller distortion and subsequent effect on spectral and structural properties. Inorg Chim Acta. 2011;370:247–53.

    CAS  Article  Google Scholar 

  38. 38.

    Dalal PV. Nucleation controlled growth of cadmium oxalate crystals in agar gel and their characterization. Indian J Mater Sci. 2013;682950:1–5.

    Article  Google Scholar 

  39. 39.

    Jia Z, Yue L, Zheng Y, Xu Z. The convenient preparation of porous CuO via copper oxalate precursor. Mater Res Bull. 2008;43:2434–40.

    CAS  Article  Google Scholar 

  40. 40.

    Janet CM, Viswanath RP. Large scale synthesis of CdS nanorods and its utilization in photo-catalytic H2 production. Nanotech. 2006;17:5271–7.

    CAS  Article  Google Scholar 

  41. 41.

    El-Trass A, ElShamy H, El-Mehasseb I, El-Kemary M. CuO nanoparticles: synthesis, characterization, optical properties and interaction with amino acids. Appl Surf Sci. 2012;258:2997–3001.

    CAS  Article  Google Scholar 

  42. 42.

    Aldwayyan AS, Al-Jekhedab FM, Al-Noaimi M, Hammouti B, Hadda TB, Suleiman M, Warad I. Synthesis and characterization of CdO nanoparticles starting from organometalic dmphen-CdI2 complex. Int J Electrochem Sci. 2013;8:10506–14.

    CAS  Google Scholar 

  43. 43.

    Askarinejad A, Morsali A. Syntheses and characterization of CdCO3 and CdO nanoparticles by using a sonochemical method. Mater Lett. 2008;62:478–82.

    CAS  Article  Google Scholar 

  44. 44.

    Selvakumar R, Geib SJ, Premkumar T, Govindarajan S. Synthesis, structure and thermal properties of a new 1D magnesium sulfoacetate coordination polymer- A precursor for MgO. J Therm Anal Calorim. 2015;121:943–9.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This paper was supported by the Faculty Research Fund, Sungkyunkwan University, 2013.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Thathan Premkumar or Subbiah Govindarajan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 197 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Selvakumar, R., Geib, S.J., Premkumar, T. et al. Synthesis, spectroscopic, thermal and XRD studies of aminoguanidinium copper and cadmium oxalates. J Therm Anal Calorim 124, 375–385 (2016). https://doi.org/10.1007/s10973-015-5136-5

Download citation

Keywords

  • Chemical synthesis
  • Inorganic compounds
  • X-ray diffraction
  • Crystal structure