Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 124, Issue 1, pp 375–385 | Cite as

Synthesis, spectroscopic, thermal and XRD studies of aminoguanidinium copper and cadmium oxalates

Crystal structure of the copper complex
  • Rajendran Selvakumar
  • Steven J. Geib
  • Thathan Premkumar
  • Subbiah Govindarajan
Article

Abstract

New aminoguanidinium metal oxalate complexes with the formulae (AmgH)2[Cu(C2O4)2] and (AmgH)2[Cd(C2O4)2(H2O)2] have been synthesized and characterized. The copper compound loses aminoguanidine exothermically at 240 °C in DTA, whereas aminoguanidine is lost endothermically at 200 °C in cadmium. Both cases decompose exothermically via their respective metal oxalate intermediates to give metal oxide as the end product. It was also observed that hydrazine is lost exothermically in the hydrazinium copper oxalate hydrate. The single-crystal X-ray diffraction study of the copper complex revealed that aminoguanidinium ions are not involved in coordination but act as charge-compensating cations. It is interesting to note that both oxalates act as bidentate chelating ligands. One oxalate bridges the neighbouring copper atom through its carbonyl oxygen with a bond length of 2.561 Å to form square pyramidal geometry around the copper atom.

Keywords

Chemical synthesis Inorganic compounds X-ray diffraction Crystal structure 

Notes

Acknowledgements

This paper was supported by the Faculty Research Fund, Sungkyunkwan University, 2013.

Supplementary material

10973_2015_5136_MOESM1_ESM.pdf (198 kb)
Supplementary material 1 (PDF 197 kb)

References

  1. 1.
    Armentano D, Munno G-De, Lloret F, Palii AV, Julve M. Novel chiral three-dimensional iron(III) compound exhibiting magnetic ordering at Tc = 40 K. Inorg Chem. 2002;41:2007–13.CrossRefGoogle Scholar
  2. 2.
    Song J-L, Mao J-G. New types of blue, red or near IR luminescent phosphonate-decorated lanthanide oxalates. Chem Eur J. 2005;11:1417–24.CrossRefGoogle Scholar
  3. 3.
    Salami TO, Marouchkin K, Zavilliji PY, Oliver SRJ. Three low-dimensional tin oxalate and tin phosphate materials: BING-4, -7, and -8. Chem Mater. 2002;14:4851–7.CrossRefGoogle Scholar
  4. 4.
    Vaithiyanathan R, Natarajan S, Rao CNR. Synthesis of a hierarchy of zinc oxalate structures from amine oxalates. J Chem Soc Dalton Trans. 2001;5:699–706.CrossRefGoogle Scholar
  5. 5.
    Vaithianathan R, Natarajan S, Cheetham AK, Rao CNR. New open-framework zinc oxalates synthesized in the presence of structure-directing organic amines. Chem Mater. 1999;11:3636–42.CrossRefGoogle Scholar
  6. 6.
    Natarajan S, Vaithianathan R, Rao CNR, Ayyappan S, Cheetham AK. Layered tin(II) oxalates possessing large apertures. Chem Mater. 1999;11:1633–9.CrossRefGoogle Scholar
  7. 7.
    Ayyappan S, Cheetham AK, Natarajan S, Rao CNR. Tin(II) oxalates synthesized in the presence of structure-directing organic amines: members of a potentially vast class of new open-framework and related materials. Chem Mater. 1998;10:3746–55.CrossRefGoogle Scholar
  8. 8.
    Novosad J, Messimeri AC, Papadimitriou CD, Veltsistas PG, Woollins JD. Copper(II) oxalate and oxamate complexes. Transit Metal Chem. 2000;25:664–9.CrossRefGoogle Scholar
  9. 9.
    Cai J, Zhang Y, Hu X, Feng X. Tris(ethylenediamine-N, N′)cobalt(III) oxalate perchlorate dehydrate. Acta Crystallogr. 2000;C56:661–3.Google Scholar
  10. 10.
    Gajapathy D, Govindarajan S, Patil KC, Manohar H. Synthesis, characterisation and thermal properties of hydrazinium metal oxalate hydrates: crystal and molecular structure of hydrazinium copper oxalate monohydrate. Polyhedron. 1983;2:865–73.CrossRefGoogle Scholar
  11. 11.
    Keene TD, Ogilvie HR, Hursthouse MB, Price DJ. One-dimensional magnetism in new, layered structures: piperazine-linked copper and nickel oxalate chains. Eur J Inorg Chem. 2004;5:1007–13.CrossRefGoogle Scholar
  12. 12.
    Keene TD, Hursthouse MB, Price DJ. Stabilization of discrete [Cu(C2O4)2(H2O)2]2— dianions in the solid state by an extensive hydrogen bonded network. Z Anorg Allg Chem. 2004;630:350–2.CrossRefGoogle Scholar
  13. 13.
    Bloomquist DR, Hansey JJ, Landee CP, Willett RD, Buder R. Structure and magnetic properties of two two-dimensional copper oxalates: bis(benzylammonium) bis(oxalato)cuprate(II) and propylenediammonium bis(oxalato)cuprate(II). Inorg Chem. 1981;20:3308–14.CrossRefGoogle Scholar
  14. 14.
    Golic L, Bulc N. Structure of guanidinium tris(oxalato)chromate(III) monohydrate. Acta Crystallogr. 1988;C44:2065–8.Google Scholar
  15. 15.
    Gajapathy D, Patil KC. Mixed metal oxalate hydrazinates as compound precursors to spinel ferrites. Mater Chem Phys. 1983;9:423–38.CrossRefGoogle Scholar
  16. 16.
    Patil KC, Gajapathy D, Pai Verneker VR. Low temperature cobaltite formation using mixed metal oxalate hydrazinate precursor. J Mater Sci Lett. 1983;2:272–4.CrossRefGoogle Scholar
  17. 17.
    Yasodhai S, Govindarajan S. Preparation and thermal behaviour of some hydrazinium dicarboxylates. Thermochim Acta. 1999;338:113–23.CrossRefGoogle Scholar
  18. 18.
    Yasodhai S, Govindarajan S. Hydrazinium oxydiacetates and oxydiacetate dianion complexes of some divalent metals with hydrazine. J Therm Anal Calorim. 2000;62:737–45.CrossRefGoogle Scholar
  19. 19.
    Kuppusamy K, Sivasankar BN, Govindarajan S. Preparation, characterisation and thermal properties of some new hydrazinium carboxylates. Thermochim Acta. 1995;259:251–62.CrossRefGoogle Scholar
  20. 20.
    Vairam S, Govindarajan S. New hydrazinium salts of benzene tricarboxylic and tetracarboxylic acids—preparation and their thermal studies. Thermochim Acta. 2004;414:263–70.CrossRefGoogle Scholar
  21. 21.
    Premkumar T, Govindarajan S. Transition metal complexes of pyrazinecarboxylic acids with neutral hydrazine as a ligand. J Therm Anal Calorim. 2005;79:115–21.CrossRefGoogle Scholar
  22. 22.
    Premkumar T, Govindarajan S. The chemistry of hydrazine derivatives—thermal behavior and characterisation of hydrazinium salts and metal hydrazine complexes of 4, 5-imidazoledicarboxylic acid. Thermochim Acta. 2002;386:35–42.CrossRefGoogle Scholar
  23. 23.
    Premkumar T, Govindarajan S. Divalent transition metal complexes of 3, 5-pyrazoledicarboxylate. J Therm Anal Calorim. 2006;84:395–9.CrossRefGoogle Scholar
  24. 24.
    Saravanan K, Govindarajan S. Preparation and thermal reactivity of hydrazinium 2, n-pyridinedicarboxylates (n = 3, 4, 5 and 6). J Therm Anal Calorim. 2003;73:951–9.CrossRefGoogle Scholar
  25. 25.
    Saravanan K, Govindarajan S. Dipicolinate complexes of main group metals with hydrazinium cation. Proc Indian Acad Sci (Chem Sci). 2005;114:25–36.CrossRefGoogle Scholar
  26. 26.
    Premkumar T, Govindarajan S. Thermoanalytical and spectral properties of new rare-earth metal 2-pyrazinecarboxylate hydrates. J Therm Anal Calorim. 2005;79:685–9.CrossRefGoogle Scholar
  27. 27.
    Premkumar T, Govindarajan S, Xie R, Pan W-P. Preparation and thermal behaviour of transition metal complexes of 4, 5-imidazoledicarboxylic acid. J Therm Anal Calorim. 2003;74:325–33.CrossRefGoogle Scholar
  28. 28.
    Yasodhai S, Govindarajan S. Hexavalent uranium dicarboxylates with hydrazine. Preparation, characterization and thermal studies. J Therm Anal Calorim. 2002;67:679–88.CrossRefGoogle Scholar
  29. 29.
    Yasodhai S, Govindarajan S. Hydrazinium oxydiacetates and oxydiacetate dianion complexes of some divalent metals with hydrazine. J Therm Anal Calorim. 2000;62:737–45.CrossRefGoogle Scholar
  30. 30.
    Premkumar T, Govindarajan S. Thermoanalytical and spectroscopic studies on hydrazinium lighter lanthanide complexes of 2-pyrazinecarboxylic acid. J Therm Anal Calorim. 2010;100:725–32.CrossRefGoogle Scholar
  31. 31.
    Aitken DJ, Albinati A, Gautier A, Husson HP, Morgant G, Nguyen-Huy D, Jiri K, Lemoine P, Ongeri S, Rizzato S, Viossat B. Platinum(II) and palladium(II) complexes with N-aminoguanidine. Eur J Inorg Chem. 2007;21:3327–34.CrossRefGoogle Scholar
  32. 32.
    Jeffery GH, Bassett J, Mendham J, Denny RC “Vogel’s Textbook of Quantitative Chemical Analysis”, 5th Ed.,1986.Google Scholar
  33. 33.
    Vogel AI. A text book of quantitative inorganic analysis. 4th ed. London: Longman; 1986.Google Scholar
  34. 34.
    Sheldrick GM, SHELXTL, version 6.10; Bruker analytical X-ray systems, Madison, WI, 2001.Google Scholar
  35. 35.
    Ross CR II, Bauer MR, Nielson RM, Abraham SC. Aminoguanidinium(1+) pentafluorozirconate: multiple redetermination and comparisons. Acta Crystallogr. 2002;B58:841–8.CrossRefGoogle Scholar
  36. 36.
    Romanenko GV, Savelyeva ZA, Podberezskaya NV, Alekseev VI, Larionov SV. Aminoguanidinium cations and the square-bipyramidal hexachlorocuprate(II) anion in the (CH8N4 )2[CuCl6 ] crystal structure. J Struct Chem. 1994;35:317–23.CrossRefGoogle Scholar
  37. 37.
    Roy S, Mitra P, Patra AK. Cu(II) complexes with square pyramidal (N2S)CuCl2 chromophore: Jahn-Teller distortion and subsequent effect on spectral and structural properties. Inorg Chim Acta. 2011;370:247–53.CrossRefGoogle Scholar
  38. 38.
    Dalal PV. Nucleation controlled growth of cadmium oxalate crystals in agar gel and their characterization. Indian J Mater Sci. 2013;682950:1–5.CrossRefGoogle Scholar
  39. 39.
    Jia Z, Yue L, Zheng Y, Xu Z. The convenient preparation of porous CuO via copper oxalate precursor. Mater Res Bull. 2008;43:2434–40.CrossRefGoogle Scholar
  40. 40.
    Janet CM, Viswanath RP. Large scale synthesis of CdS nanorods and its utilization in photo-catalytic H2 production. Nanotech. 2006;17:5271–7.CrossRefGoogle Scholar
  41. 41.
    El-Trass A, ElShamy H, El-Mehasseb I, El-Kemary M. CuO nanoparticles: synthesis, characterization, optical properties and interaction with amino acids. Appl Surf Sci. 2012;258:2997–3001.CrossRefGoogle Scholar
  42. 42.
    Aldwayyan AS, Al-Jekhedab FM, Al-Noaimi M, Hammouti B, Hadda TB, Suleiman M, Warad I. Synthesis and characterization of CdO nanoparticles starting from organometalic dmphen-CdI2 complex. Int J Electrochem Sci. 2013;8:10506–14.Google Scholar
  43. 43.
    Askarinejad A, Morsali A. Syntheses and characterization of CdCO3 and CdO nanoparticles by using a sonochemical method. Mater Lett. 2008;62:478–82.CrossRefGoogle Scholar
  44. 44.
    Selvakumar R, Geib SJ, Premkumar T, Govindarajan S. Synthesis, structure and thermal properties of a new 1D magnesium sulfoacetate coordination polymer- A precursor for MgO. J Therm Anal Calorim. 2015;121:943–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.Department of ChemistryGovernment College of TechnologyCoimbatoreIndia
  2. 2.Department of ChemistryUniversity of PittsburghPittsburghUSA
  3. 3.The University College, Department of ChemistrySungkyunkwan UniversitySuwonSouth Korea
  4. 4.Department of ChemistryBharathiar UniversityCoimbatoreIndia

Personalised recommendations