Skip to main content
Log in

A novel approach for investigation of chemical aging in composite propellants through laser-induced breakdown spectroscopy (LIBS)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Many methods have been developed in recent years for the analysis and evaluation of energetic materials. This work introduces a novel approach for the analysis and aging of solid composite propellants by laser-induced breakdown spectroscopy (LIBS). The results of the plasma spectrum were used to investigate the behavior of the aged samples. For this purpose, CN and AlO molecular bands of different samples were compared with each other. The samples were examined under inert argon atmosphere to study LIBS signal improvement. Some absent lines such as C and C2 swan bands were detected and reduction of air impact was carried out. Line intensity ratios of samples were changed for all samples during their aging. Differential scanning calorimetry (DSC) method was used to compare them with the output of LIBS’s technique. The results of LIBS and DSC methods show a similar trend in changing mechanical and thermal properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Agrawal JP. High energy materials: propellants, explosives and pyrotechnics. New York: Wiley; 2010.

    Book  Google Scholar 

  2. Keshavarz MH. Research progress on heats of formation and detonation of energetic compounds. In: Brar SK, editor. Hazardous materials: types, risks and control. New York: Nova Science Publishers, Inc.; 2011. p. 339–59.

    Google Scholar 

  3. Davenas A. Solid rocket propulsion technology. France: Technology and Research Director; 1993.

    Google Scholar 

  4. Keshavarz MH. A simple procedure for calculating condensed phase heat of formation of nitroaromatic energetic materials. J Hazard Mater. 2006;136(3):425–31.

    Article  CAS  Google Scholar 

  5. Sutton G, Biblarz O. Rocket propulsion elements. New York: Wiley; 2000.

    Google Scholar 

  6. Fuente DL, Luis J. An analysis of the thermal aging behaviour in high-performance energetic composites through the glass transition temperature. Polym Degrad Stab. 2009;94(4):664–9.

    Article  Google Scholar 

  7. Salehi H, Eslami M, Sarbolouki MN. Probing the cure and post-cure reactions in polyurethanes by FTIR and GPC. Iran J Chem Chem Eng. 1996;15(2):87–92.

    CAS  Google Scholar 

  8. Sepe MP. Dynamic mechanical analysis for plastics engineering. Norwich: Plactic Design Library; 1998.

    Google Scholar 

  9. Krishnan K, Viswanathan G, Kurian AJ, Ninan KN. Kinetics of decomposition of nitramine propellant by differential scanning calorimetry. Defence Sci J. 2013;42(3):135–9.

    Article  Google Scholar 

  10. Skvortsov LA. Laser methods for detecting explosive residues on surfaces of distant objects. Quantum Electron. 2012;42:1–11.

    Article  CAS  Google Scholar 

  11. Leahy-Hoppa MR, Miragliotta J, Osiander R, Burnett J, Dikmelik Y, McEnnis C, et al. Ultrafast laser-based spectroscopy and sensing: applications in LIBS, CARS, and THz spectroscopy. Sensors. 2010;10:4342–72.

    Article  CAS  Google Scholar 

  12. Wallin S, Pettersson A, Östmark H, Hobro A. Laser-based standoff detection of explosives: a critical review. Anal Bioanal Chem. 2009;395:259–74.

    Article  CAS  Google Scholar 

  13. Kim K, Tsay OG, Atwood DA, Churchill DG. Destruction and detection of chemical warfare agents. Chem Rev. 2011;111:5345–403.

    Article  CAS  Google Scholar 

  14. Moros J, Lorenzo JA, Laserna JJ. Standoff detection of explosives: critical comparison for ensuing options on Raman spectroscopy–LIBS sensor fusion. Anal Bioanal Chem. 2011;440:3353–65.

    Article  Google Scholar 

  15. Hahn DW, Omenetto N. Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma particle interactions: still-challenging issues within the analytical plasma community. Appl Spectrosc. 2010;64:335–66.

    Article  Google Scholar 

  16. Hahn DW, Omenetto N. Laser-induced breakdown spectroscopy (LIBS), part II: review of Instrumental and methodological approaches to material analysis and applications to different fields. Appl Spectrosc. 2012;66:347–419.

    Article  CAS  Google Scholar 

  17. Wainner RT, Harmon RS, Miziolek AW, McNesby KL, French PD. Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments. Spectrochim Acta B. 2001;56:777–93.

    Article  Google Scholar 

  18. Rusak DA, Castle BC, Smith BW, Winefordner JD. Fundamentals and applications of laser induced breakdown spectroscopy. Crit Rev Anal Chem. 1997;27:257–90.

    Article  CAS  Google Scholar 

  19. Lucena P, Doña A, Tobaria LM, Laserna JJ. New challenges and insights in the detection and spectral identification of organic explosives by laser induced breakdown spectroscopy. Spectrochim Acta Part B. 2011;66:12–20.

    Article  Google Scholar 

  20. Nakimana A, Tao H, Gao X, Hao Z, Lin J. Effects of ambient conditions on femtosecond laser-induced breakdown spectroscopy of Al. J Phys D Appl Phys. 2013;46(28):285.

    Article  Google Scholar 

  21. Babushok VI, DeLucia FC, Dagdigian PJ, Miziolek AW. Experimental and kinetic modeling study of the laser-induced breakdown spectroscopy plume from metallic lead in argon. Spectrochim Acta B. 2005;60:926–34.

    Article  Google Scholar 

  22. Rocco JAFF, Lima JES, Frutuoso AG, Iha K, Ionashiro M, Matos JR, et al. Thermal degradation of a composite solid propellant examined by DSC. J Therm Anal Calorim. 2004;75(2):551–7.

    Article  CAS  Google Scholar 

  23. Mathot VBF. New routes for thermal analysis and calorimetry as applied to polymeric systems. J Therm Anal Calorim. 2001;64(1):15–35.

    Article  CAS  Google Scholar 

  24. Majling J, Šimon P, Khunová V. Optical transmittance thermal analysis of the poly(ethylene terephthalate) foils. J Therm Anal Calorim. 2002;67(1):201–6.

    Article  CAS  Google Scholar 

  25. Klerk WPD, Heijden AEVD, Veltmans WHM. Thermal analysis of the high-energetic material HNF. J Therm Anal Calorim. 2001;64(3):973–85.

    Article  Google Scholar 

  26. Kazemi A, Hayaty M, Mousaviazar A, Samani KA, Keshavarz MH. The synthesis and characterization of polyvinyl nitrate as an energetic polymer and study of its thermal behavior. J Therm Anal Calorim. 2015;119:613–8.

    Article  CAS  Google Scholar 

  27. Stanković M, Kapor V, Petrović S. The thermal decomposition of triple-base propellants. J Therm Anal Calorim. 1999;56(3):1383–8.

    Article  Google Scholar 

  28. Jones DEG. Thermal analysis studies on isopropylnitrate. J Therm Anal Calorim. 1999;55(1):9–19.

    Article  CAS  Google Scholar 

  29. Keshavarz MH, Bashavard B, Goshadro A, Dehghan Z, Jafari M. Prediction of heats of sublimation of energetic compounds using their molecular structures. J Therm Anal Calorim. 2015;120:1941–51.

    Article  CAS  Google Scholar 

  30. Keshavarz MH, Ghani K, Asgari A. A suitable computer code for prediction of sublimation energy and deflagration temperature of energetic materials. J Therm Anal Calorim. 2015;121:675–81.

    Article  CAS  Google Scholar 

  31. Zohari N, Keshavarz MH, Seyedsadjadi SA. A link between impact sensitivity of energetic compounds and their activation energies of thermal decomposition. J Therm Anal Calorim. 2014;117:423–32.

    Article  CAS  Google Scholar 

  32. Zohari N, Keshavarz MH, Seyedsadjadi SA. A novel method for risk assessment of electrostatic sensitivity of nitroaromatics through their activation energies of thermal decomposition. J Therm Anal Calorim. 2014;115:93–100.

    Article  CAS  Google Scholar 

  33. Hocaoğlu Ö, Pekel F, Özkar S. Aging of HTPB/AP-based composite solid propellants, depending on the NCO/OH and triol/diol ratios. J Appl Polym Sci. 2001;79(6):959–64.

    Article  Google Scholar 

  34. Lyton LH. Chemical structural aging studies on HTPB propellant. Morton Thiokol INC Brigham City UT Wasatch Operations. 1975.

  35. Bunyan P, Cunliffe AV, Davis A, Kirby FA. The Degradation and stabilization of solid rocket propellants. Polym Degrad Stabil. 1993;40(2):239–50.

    Article  CAS  Google Scholar 

  36. Kelen T. Polymer degradation. New York: Reinhold Company; 1983.

    Google Scholar 

  37. NIST [database on the Internet]. 2014. http://Physics.nist.gov/physrrefdata/ASD/lines-frome.html

  38. Hornkohl JO, Parigger C, Lewis JWL. Temperature measurements from CN spectra in a laser-induced plasma. J Quant Spectrosc Radiat Transfer. 1991;46:405–11.

    Article  CAS  Google Scholar 

  39. Nemes L, Keszler AM, Hornkohl JO, Parigger CG. Laser-induced carbon plasma emission spectroscopic measurements on solid targets and in gas-phase optical breakdown. Appl Optics. 2005;44:3661–7.

    Article  Google Scholar 

  40. Ndiaye AA, Lago V. Optical spectroscopy investigation of N2–CH4 plasma jets simulating titan atmospheric entry conditions. Plasma Sources Sci Technol. 2011;20(1):015015.

    Article  Google Scholar 

  41. Parigger CG. Atomic and molecular emissions in laser-induced breakdown spectroscopy. Spectrochim Acta Part B. 2013;79:4–16.

    Article  Google Scholar 

  42. Abdelli-Messaci S, Kerdja T, Bendib A, Malek S. CN emission spectroscopy study of carbon plasma in nitrogen environment. Spectrochim Acta Part B. 2005;60(7):955–9.

    Article  Google Scholar 

  43. Dong M, Lu J, Yao S, Zhong Z. Experimental study on the characteristics of molecular emission spectroscopy for the analysis of solid materials containing C and N. Opt Express. 2011;19(18):17021–9.

    Article  CAS  Google Scholar 

  44. Babushok VI, DeLucia JFC, Dagdigian PJ, Gottfried JL, Munson CA, Nusca MJ, et al. Kinetic modeling study of the laser-induced plasma plume of cyclotrimethylenetrinitramine (RDX). Spectrochim Acta Part B. 2007;62(12):1321–8.

    Article  Google Scholar 

  45. Dors IG, Parigger C, Lewis JWL. Spectroscopic temperature determination of aluminum monoxide in laser ablation with 266-nm radiation. Opt Lett. 1998;23(22):1778–80.

    Article  CAS  Google Scholar 

  46. Yuasa S, Zhu Y, Sogo S. Ignition and combustion of aluminum in oxygen/nitrogen mixture streams. Combust Flame. 1997;108:387–90.

    Article  CAS  Google Scholar 

  47. Cremers DA, Radziemski LJ. Handbook of laser-induced breakdown spectroscopy. Oxford: Wiley; 2013.

    Book  Google Scholar 

  48. Kubota N. Propellants and explosives: thermochemical aspects of combustion. New York: Wiley; 2007.

    Google Scholar 

Download references

Acknowledgements

We would like to thank the research committee of Malek-Ashtar University of Technology (MUT) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Hossein Farhadian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhadian, A.H., Tehrani, M.K., Keshavarz, M.H. et al. A novel approach for investigation of chemical aging in composite propellants through laser-induced breakdown spectroscopy (LIBS). J Therm Anal Calorim 124, 279–286 (2016). https://doi.org/10.1007/s10973-015-5116-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5116-9

Keywords

Navigation