Skip to main content
Log in

Kinetic analysis of the process of melamine pyrophosphate synthesis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper presents the results of investigations of the kinetics of the first degree of condensation of melamine orthophosphate to melamine pyrophosphate. The investigations were conducted under isothermal conditions and at constant rate of sample heating. The effects of sample mass and heating rate on the kinetic parameters of the process were determined. The activation energy of the process was determined using the approximate Kissinger method and the isoconversional Kissinger–Akahira–Sunose method. A complete analysis of the process was conducted to establish a kinetic model and to determine the activation energy and the value of the pre-exponential factor. It was found that in the initial period of the conversion (up to the value of ca. 0.20), the limiting stage of the process is chemical reaction (first-order reaction model—Mampel F1 equation). At conversion values α above 0.2, the reaction is described by Avrami–Erofeev A2 model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A :

Pre-exponential factor in Arrhenius equation

E :

Activation energy

f(α), h(α):

Kinetic component of the reaction rate equation

g(α):

Integrated form of the reaction model

k :

Reaction rate constant

m, n :

Coefficients in the kinetic equation

R :

Gas constant

T :

Temperature

T p :

Temperature of the peak maximum

v, dα/dt :

Reaction rate

α :

Extent of conversion

β :

Heating rate

γ :

Significance level

t γ :

Student’s t test value

N:

Number of measurements

References

  1. Lyon RE, Walters RN, Stoliarov SI. Thermal analysis of flammability. J Therm Anal Calorim. 2007. doi:10.1007/s10973-006-8257-z.

    Google Scholar 

  2. Lyon RE, Safronava N. Comparison of direct methods to determine nth order kinetic parameters of solid thermal decomposition for use in fire models. J Therm Anal Calorim. 2013. doi:10.1007/s10973-012-2916-z.

    Google Scholar 

  3. Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM, Dubois Ph. New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater Sci Eng. 2009. doi:10.1016/j.mser.2008.09.002.

    Google Scholar 

  4. Costa L, Camino G, Luda di Cortemilia MP. Mechanism of thermal degradation of fire-retardant melamine salts. Fire Polym. 1990. doi:10.1021/bk-1990-0425.ch015.

    Google Scholar 

  5. Zhou S, Song L, Wang Z, Hu Y, Xing W. Flame retardation and char formation mechanism of intumescent flame retarded polypropylene composites containing melamine phosphate and pentaerythritol phosphate. Polym Degrad Stab. 2008. doi:10.1016/j.polymdegradstab.2008.07.012.

    Google Scholar 

  6. Cichy B, Łuczkowska D, Nowak M, Władyka-Przybylak M. Polyphosphate flame retardants with increased heat resistance. Ind Eng Chem Res. 2003. doi:10.1021/ie0208570.

    Google Scholar 

  7. Chen Y, Wang Q. Preparation, properties and characterizations of halogen-free nitrogen–phosphorous flame-retarded glass fiber reinforced polyamide 6 composite. Polym Degrad Stab. 2006. doi:10.1016/j.polymdegradstab.2006.02.006.

    Google Scholar 

  8. Cichy B, Kużdżał E. Obtaining monodisperse melamine phosphate grain by continuous reaction crystallization process. Ind Eng Chem Res. 2014. doi:10.1021/ie3020928.

    Google Scholar 

  9. Szustakiewicz K, Cichy B, Gazińska M. Comparative study on flame, thermal, and mechanical properties of HDPE/clay nanocomposites with MPP or APP. J Reinf Plast Compos. 2013. doi:10.1177/0731684413481508.

    Google Scholar 

  10. Cichy B. Melamine phosphates as ecologically friendly, halogen free flame retardants in polymer materials. Chemik. 2013;67:214–9.

    CAS  Google Scholar 

  11. Cichy B, Kużdżał E. Kinetic model of melamine phosphate precipitation. Ind Eng Chem Res. 2012. doi:10.1021/ie3020928.

    Google Scholar 

  12. Schartel B. Phosphorus-based flame retardancy mechanisms—old hat or a starting point for future development? Materials. 2010. doi:10.3390/ma3104710.

    Google Scholar 

  13. Fu X, Liu Y, Wang Q, Zhang Z, Wang Z, Zhang J. Novel synthesis method for melamine polyphosphate and its flame retardancy on glass fiber reinforced polyamide 66. Polym Plast Technol Eng. 2011. doi:10.1080/03602559.2011.603777.

    Google Scholar 

  14. Nyambo C, Kandare E, Wilkie CA. Thermal stability and flammability characteristics of ethylene vinyl acetate (EVA) composites blended with a phenyl phosphonate-intercalated layered double hydroxide (LDH), melamine polyphosphate and/or boric acid. Polym Degrad Stab. 2009. doi:10.1016/j.polymdegradstab.2009.01.028.

    Google Scholar 

  15. Brinkmann A, Litvinov VM, Kentgens APM. Environmentally friendly flame retardants. A detailed solid-state NMR study of melamine orthophosphate. Magn Reson Chem. 2007. doi:10.1002/mrc.2159.

    Google Scholar 

  16. Cichy B, Folek S, Hoffman J, Nowak M. Process for conversion of ortophosphates to polyphosphates. Przem Chem. 2010;89:916–20.

    Google Scholar 

  17. Chen Y, Wang Q. Reaction of melamine phosphate with pentaerythritol and its products for flame retardation of polypropylene. Polym Adv Technol. 2007. doi:10.1002/pat.845.

    Google Scholar 

  18. Zhang S, Shi H-S, Huang S-W, Zhang P. Dehydration characteristics of struvite-K pertaining to magnesium potassium phosphate cement system in non-isothermal condition. J Therm Anal Calorim. 2012. doi:10.1007/s10973-011-2170-9.

    Google Scholar 

  19. Frost RL, Weier ML, Erickson KL. Thermal decomposition of struvite. J Therm Anal Calorim. 2004;76:1025–33.

    Article  CAS  Google Scholar 

  20. Samuskevich VV, Lukyanchenko OA. Thermal transformations of Mg(H2PO4)2 4H2O. Thermochim Acta. 1998;311:87–95.

    Article  CAS  Google Scholar 

  21. Samuskevich VV, Lukyanchenko OA. Thermal transformations of Co(H2PO4)2·2H2O. Thermochim Acta. 1999;327:181–9.

    Article  Google Scholar 

  22. Samuskevich VV. Kinetics and mechanism of topochemical transformations of phosphoric salts. J Therm Anal Calorim. 2001. doi:10.1023/A:1010152407115.

    Google Scholar 

  23. Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011. doi:10.1016/j.tca.2011.03.034.

    Google Scholar 

  24. Małecki A. Kinetic analysis of heterogenous reactions and phase transitions in non-isothermal conditions, in SAT’08, V School of Thermal Analysis, 6–9 April 2008, Zakopane (Poland) (in Polish).

  25. Cai JM, Liu RH. Precision of integral methods for the determination of the kinetic parameters used in the kinetic analysis of solid-state reactions. J Therm Anal Calorim. 2008;91:275–8.

    Article  CAS  Google Scholar 

  26. Simon P, Thomas P, Dubaj T, Cibulkova Z, Peller A, Veverka M. The mathematical incorrectness of the integral isoconversion methods in case of variable activation energy and the consequences. J Therm Anal Calorim. 2014;115:853–9.

    Article  CAS  Google Scholar 

  27. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957. doi:10.1021/ac60131a045.

    Google Scholar 

  28. Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Commun. 2006. doi:10.1002/marc.200600404.

    Google Scholar 

  29. Lyon RE. Direct isoconversion method for nonisothermal kinetic analysis. J Test Eval. 2014. doi:10.1520/JTE20140169.

    Google Scholar 

Download references

Acknowledgements

This work was supported by Applied Research Programme of the Polish National Centre for Research and Development, Contract Number PBS2/B2/7/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Nowak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nowak, M., Cichy, B. & Kużdżał, E. Kinetic analysis of the process of melamine pyrophosphate synthesis. J Therm Anal Calorim 124, 329–339 (2016). https://doi.org/10.1007/s10973-015-5093-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5093-z

Keywords

Navigation