Journal of Thermal Analysis and Calorimetry

, Volume 122, Issue 3, pp 1203–1212 | Cite as

Lifetime estimation applying a kinetic model based on the generalized logistic function to biopolymers

  • Javier Tarrío-Saavedra
  • Jorge López-Beceiro
  • Ana Álvarez
  • Salvador Naya
  • Sara Quintana-Pita
  • Santiago García-Pardo
  • Francisco Javier García-Sabán
Article

Abstract

The aim of this work was to estimate the lifetime due thermal aging of polymers and even other materials using a new approach based on the application of a kinetic model based on the generalized logistic function. For this purpose, thermogravimetric analysis, including dynamic and isothermal tests, was performed for different formulations based on polylactic acid used in dental applications (scaffolds). In this work, lifetime is defined as the time passed for losing the 5 wt% of the mass corresponding to the first and main degradation process. The 5 mass% mass loss could be a critic parameter in manufacturing processes, in terms of economical profit and quality of the final product. The proposed model provides lifetime estimates of polymeric materials depending on the storage temperature. The present procedure permits to obtain lifetime estimates of materials characterized by more than one main degradation process, since they can be dis-overlapped using generalized logistic functions.

Keywords

Lifetime Scaffolds Thermogravimetric analysis Logistic function Kinetics Biopolymers 

References

  1. 1.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  2. 2.
    ASTM E1641-07 Standard test method for decomposition kinetics by thermogravimetry, Annual Book of ASTM Standards, vol. 14.02, ASTM International, West Conshohocken, PA, 2007.Google Scholar
  3. 3.
    ASTM E698-05 Standard Test Method for Arrhenius Kinetic Constants for Thermally Unstable Materials, Annual Book of ASTM Standards, vol. 14.02, ASTM International, West Conshohocken, PA, 2005, p. 226.Google Scholar
  4. 4.
    Prime RB, Bair HE, Vyazovkin S, Gallagher PK, Riga A. Thermogravimetric analysis (TGA). In: Menczel JD, Prime RB, editors. Thermal analysis of polymers Fundamentals and applications. San José: Wiley; 2009. p. 241–318.CrossRefGoogle Scholar
  5. 5.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  6. 6.
    Tarrío-Saavedra J, Naya S, López-Beceiro J, Zaragoza S, Álvarez A, Quintela-Pita S, García-Sabán J. Degradation modelling of bio-polymers used as dental scaffolds. In: Natal Jorge RM, Reis Campos JC, Vaz MAP, Santos SM, Tavares JMRS, editors. Biodental engineering III, 51. London: CRC Press, Taylor & Francis Group; 2014. p. 281–6.Google Scholar
  7. 7.
    Vyazovkin S. A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet. 1996;28:95–101.CrossRefGoogle Scholar
  8. 8.
    López-Beceiro J, Gracia-Fernández C, Artiaga R. A kinetic model that fits nicely isothermal and non-isothermal bulk crystallizations of polymers from the melt. Eur Polym J. 2013;49:2233–46.CrossRefGoogle Scholar
  9. 9.
    Rios-Fachal M, Gracia-Fernández C, López-Beceiro J, Gómez-Barreiro S, Tarrío-Saavedra J, Ponton A. Effect of nanotubes on the thermal stability of polystyrene. J Therm Anal Calorim. 2013;113:481–7.CrossRefGoogle Scholar
  10. 10.
    Prout EG, Tompkins FC. The thermal decomposition of potassium permanganate. Trans Faraday Soc. 1944;40:488–98.CrossRefGoogle Scholar
  11. 11.
    Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 1997;28:5–24.CrossRefGoogle Scholar
  12. 12.
    Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4:518–24.CrossRefGoogle Scholar
  13. 13.
    Hoque ME, Yong LC, Ian P. Mathematical modeling on degradation of 3d tissue engineering scaffold materials. Regen Res. 2012;1(1):58–61.Google Scholar
  14. 14.
    Pitt CG, Zhong-wei G. Modification of the rates of chain cleavage of poly (ϵ-caprolactone) and related polyesters in the solid state. J Control Release. 1987;4:283–92.CrossRefGoogle Scholar
  15. 15.
    Sandino C, Planell JA, Lacroix D. A finite element study of mechanical stimuli in scaffolds for bone tissue engineering. J Biomech. 2008;41:1005–14.CrossRefGoogle Scholar
  16. 16.
    Thermal analysis application brief. Estimation of polymer lifetime by TGA decomposition kinetics. TA Instrument technical note no 125. http://www.tainstruments.com/main.aspx?id=46&n=2&siteid=11. Accessed 20 Oct 2014.
  17. 17.
    Kingsland SE. Modeling nature: episodes in the history of population ecology. 2nd ed. Chicago: University of Chicago Press; 1995.Google Scholar
  18. 18.
    Román-Román P, Torres-Ruiz F. Modelling logistic growth by a new diffusion process: application to biological systems. Biosystems. 2012;110:9–21.CrossRefGoogle Scholar
  19. 19.
    Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM. Clarifications regarding the use of model-fitting methods of kinetic analysis for determining the activation energy from a single non-isothermal curve. Chem Cent J. 2013;7:25.CrossRefGoogle Scholar
  20. 20.
    López-Beceiro J, Pascual-Cosp J, Artiaga R, Tarrío-Saavedra J, Naya S. Thermal characterization of ammonium alum. J Therm Anal Calorim. 2010;104:127–30.CrossRefGoogle Scholar
  21. 21.
    López-Beceiro J, Gracia-Fernández C, Gómez-Barreiro S, Castro-García S, Sánchez-Andújar M, Artiaga R. Kinetic study of the low temperature transformation of Co (HCOO) 3 [(CH3) 2NH2]. J Phys Chem C. 2012;116:1219–24.CrossRefGoogle Scholar
  22. 22.
    Francisco-Fernández M, Tarrío-Saavedra J, Mallik A, Naya S. A comprehensive classification of wood from thermogravimetric curves. Chemom Intell Lab Syst. 2012;118:159–72.CrossRefGoogle Scholar
  23. 23.
    Pato-Doldán B, Sánchez-Andújar M, Gómez-Aguirre LC, Yáñez-Vilar S, Lopez-Beceiro J, Gracía-Fernandez C, et al. Near room temperature dielectric transition in the perovskite formate framework [(CH3) 2NH2][Mg (HCOO) 3]. Phys Chem Chem Phys. 2012;14:8498–501.CrossRefGoogle Scholar
  24. 24.
    Tarrío-Saavedra J, Francisco-Fernández M, Naya S, López-Beceiro J, Gracia-Fernández C, Artiaga R. Wood identification using pressure DSC data: Wood identification from PDSC. J Chemom. 2013;. doi:10.1002/cem.2561.Google Scholar
  25. 25.
    López-Beceiro J, Pascual-Cosp J, Artiaga R, Tarrío-Saavedra J, Naya S. Thermal characterization of ammonium alum. J Therm Anal Calorim. 2011;104:127–30.CrossRefGoogle Scholar
  26. 26.
    López-Beceiro J, Gracia-Fernández C, Tarrío-Saavedra J, Gómez-Barreiro S, Artiaga R. Study of gypsum by PDSC. J Therm Anal Calorim. 2012;109:1177–83.CrossRefGoogle Scholar
  27. 27.
    Ríos-Fachal M, Tarrío-Saavedra J, López-Beceiro J, Naya S, Artiaga R. Optimizing fitting parameters in Thermogravimetry. J Therm Anal Calorim. 2014;116:1141–51.CrossRefGoogle Scholar
  28. 28.
    Rosenbrock HH. An automatic method for finding the greatest or least value of a function. Comput J. 1960;3:175–84.CrossRefGoogle Scholar
  29. 29.
    GNOME Office/Gnumeric—Welcome to Gnumeric! https://projects.gnome.org/gnumeric/. Last Accessed 20 Oct 2014.

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Javier Tarrío-Saavedra
    • 1
  • Jorge López-Beceiro
    • 1
  • Ana Álvarez
    • 1
  • Salvador Naya
    • 1
  • Sara Quintana-Pita
    • 2
  • Santiago García-Pardo
    • 2
  • Francisco Javier García-Sabán
    • 2
  1. 1.Escola Politécnica SuperiorUniversidade da CoruñaFerrolSpain
  2. 2.DevelopbiosystemA CoruñaSpain

Personalised recommendations