Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Lifetime estimation applying a kinetic model based on the generalized logistic function to biopolymers

  • 179 Accesses

  • 4 Citations


The aim of this work was to estimate the lifetime due thermal aging of polymers and even other materials using a new approach based on the application of a kinetic model based on the generalized logistic function. For this purpose, thermogravimetric analysis, including dynamic and isothermal tests, was performed for different formulations based on polylactic acid used in dental applications (scaffolds). In this work, lifetime is defined as the time passed for losing the 5 wt% of the mass corresponding to the first and main degradation process. The 5 mass% mass loss could be a critic parameter in manufacturing processes, in terms of economical profit and quality of the final product. The proposed model provides lifetime estimates of polymeric materials depending on the storage temperature. The present procedure permits to obtain lifetime estimates of materials characterized by more than one main degradation process, since they can be dis-overlapped using generalized logistic functions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

  2. 2.

    ASTM E1641-07 Standard test method for decomposition kinetics by thermogravimetry, Annual Book of ASTM Standards, vol. 14.02, ASTM International, West Conshohocken, PA, 2007.

  3. 3.

    ASTM E698-05 Standard Test Method for Arrhenius Kinetic Constants for Thermally Unstable Materials, Annual Book of ASTM Standards, vol. 14.02, ASTM International, West Conshohocken, PA, 2005, p. 226.

  4. 4.

    Prime RB, Bair HE, Vyazovkin S, Gallagher PK, Riga A. Thermogravimetric analysis (TGA). In: Menczel JD, Prime RB, editors. Thermal analysis of polymers Fundamentals and applications. San José: Wiley; 2009. p. 241–318.

  5. 5.

    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

  6. 6.

    Tarrío-Saavedra J, Naya S, López-Beceiro J, Zaragoza S, Álvarez A, Quintela-Pita S, García-Sabán J. Degradation modelling of bio-polymers used as dental scaffolds. In: Natal Jorge RM, Reis Campos JC, Vaz MAP, Santos SM, Tavares JMRS, editors. Biodental engineering III, 51. London: CRC Press, Taylor & Francis Group; 2014. p. 281–6.

  7. 7.

    Vyazovkin S. A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet. 1996;28:95–101.

  8. 8.

    López-Beceiro J, Gracia-Fernández C, Artiaga R. A kinetic model that fits nicely isothermal and non-isothermal bulk crystallizations of polymers from the melt. Eur Polym J. 2013;49:2233–46.

  9. 9.

    Rios-Fachal M, Gracia-Fernández C, López-Beceiro J, Gómez-Barreiro S, Tarrío-Saavedra J, Ponton A. Effect of nanotubes on the thermal stability of polystyrene. J Therm Anal Calorim. 2013;113:481–7.

  10. 10.

    Prout EG, Tompkins FC. The thermal decomposition of potassium permanganate. Trans Faraday Soc. 1944;40:488–98.

  11. 11.

    Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 1997;28:5–24.

  12. 12.

    Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4:518–24.

  13. 13.

    Hoque ME, Yong LC, Ian P. Mathematical modeling on degradation of 3d tissue engineering scaffold materials. Regen Res. 2012;1(1):58–61.

  14. 14.

    Pitt CG, Zhong-wei G. Modification of the rates of chain cleavage of poly (ϵ-caprolactone) and related polyesters in the solid state. J Control Release. 1987;4:283–92.

  15. 15.

    Sandino C, Planell JA, Lacroix D. A finite element study of mechanical stimuli in scaffolds for bone tissue engineering. J Biomech. 2008;41:1005–14.

  16. 16.

    Thermal analysis application brief. Estimation of polymer lifetime by TGA decomposition kinetics. TA Instrument technical note no 125. http://www.tainstruments.com/main.aspx?id=46&n=2&siteid=11. Accessed 20 Oct 2014.

  17. 17.

    Kingsland SE. Modeling nature: episodes in the history of population ecology. 2nd ed. Chicago: University of Chicago Press; 1995.

  18. 18.

    Román-Román P, Torres-Ruiz F. Modelling logistic growth by a new diffusion process: application to biological systems. Biosystems. 2012;110:9–21.

  19. 19.

    Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM. Clarifications regarding the use of model-fitting methods of kinetic analysis for determining the activation energy from a single non-isothermal curve. Chem Cent J. 2013;7:25.

  20. 20.

    López-Beceiro J, Pascual-Cosp J, Artiaga R, Tarrío-Saavedra J, Naya S. Thermal characterization of ammonium alum. J Therm Anal Calorim. 2010;104:127–30.

  21. 21.

    López-Beceiro J, Gracia-Fernández C, Gómez-Barreiro S, Castro-García S, Sánchez-Andújar M, Artiaga R. Kinetic study of the low temperature transformation of Co (HCOO) 3 [(CH3) 2NH2]. J Phys Chem C. 2012;116:1219–24.

  22. 22.

    Francisco-Fernández M, Tarrío-Saavedra J, Mallik A, Naya S. A comprehensive classification of wood from thermogravimetric curves. Chemom Intell Lab Syst. 2012;118:159–72.

  23. 23.

    Pato-Doldán B, Sánchez-Andújar M, Gómez-Aguirre LC, Yáñez-Vilar S, Lopez-Beceiro J, Gracía-Fernandez C, et al. Near room temperature dielectric transition in the perovskite formate framework [(CH3) 2NH2][Mg (HCOO) 3]. Phys Chem Chem Phys. 2012;14:8498–501.

  24. 24.

    Tarrío-Saavedra J, Francisco-Fernández M, Naya S, López-Beceiro J, Gracia-Fernández C, Artiaga R. Wood identification using pressure DSC data: Wood identification from PDSC. J Chemom. 2013;. doi:10.1002/cem.2561.

  25. 25.

    López-Beceiro J, Pascual-Cosp J, Artiaga R, Tarrío-Saavedra J, Naya S. Thermal characterization of ammonium alum. J Therm Anal Calorim. 2011;104:127–30.

  26. 26.

    López-Beceiro J, Gracia-Fernández C, Tarrío-Saavedra J, Gómez-Barreiro S, Artiaga R. Study of gypsum by PDSC. J Therm Anal Calorim. 2012;109:1177–83.

  27. 27.

    Ríos-Fachal M, Tarrío-Saavedra J, López-Beceiro J, Naya S, Artiaga R. Optimizing fitting parameters in Thermogravimetry. J Therm Anal Calorim. 2014;116:1141–51.

  28. 28.

    Rosenbrock HH. An automatic method for finding the greatest or least value of a function. Comput J. 1960;3:175–84.

  29. 29.

    GNOME Office/Gnumeric—Welcome to Gnumeric! https://projects.gnome.org/gnumeric/. Last Accessed 20 Oct 2014.

Download references


This research has been partially supported by the Spanish Ministry of Science and Innovation. Grant MTM2011-22392 and MTM2013-41383P (ERDF included).

Author information

Correspondence to Javier Tarrío-Saavedra.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tarrío-Saavedra, J., López-Beceiro, J., Álvarez, A. et al. Lifetime estimation applying a kinetic model based on the generalized logistic function to biopolymers. J Therm Anal Calorim 122, 1203–1212 (2015). https://doi.org/10.1007/s10973-015-5083-1

Download citation


  • Lifetime
  • Scaffolds
  • Thermogravimetric analysis
  • Logistic function
  • Kinetics
  • Biopolymers