Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 122, Issue 3, pp 1245–1255 | Cite as

About the thermal transformations and sintering of a Ghassoul clay from Morocco

Effect of the particle grinding and selection
  • G. L. Lecomte-Nana
  • Y. El Hafiane
  • A. Badaz
  • N. Tessier-Doyen
  • Y. Abouliatim
  • A. Smith
  • L. Nibou
  • B. Tanouti
Article

Abstract

A Ghassoul clay from Morocco was studied regarding the effect of (1) grinding and (2) selection of the particle size distribution (classification) on the thermal transformations during sintering. Ghassoul clay contains stevensite, dolomite and quartz as major minerals. Prior to the classification, the starting coarse aggregates of the raw clay were first dry-ground below 500 μm and the obtained particles of powder were then granulated in order to produce adequate pellets for shaping by uniaxial pressing. Classification was performed to obtain three grain size distributions, namely greater than 500 μm, between 500 and 315 μm and lower than 315 μm. As the grain size distribution became finer, the proportion of carbonate phases was increased. DTA–TG analyses were in agreement with this trend, and in addition, dilatometry analyses showed that the densification was shifted to lower temperatures when decreasing the size of granules. The major phases occurring after sintering at 1200 °C were diopside, enstatite and forsterite as expected from the equilibrium phase diagram. Moreover, the smaller clay fraction (typically lower than 40 μm) enhanced the formation of melilite and monticellite. Nevertheless, a swelling occurred during sintering that balanced the densification shrinkage. According to these results, the sintering of Ghassoul clay proceeds through several stages regardless of the particle size selection. With a mean size of granules lower than 315 μm, the densification can be achieved at 1100 °C, while for greater sizes, a similar densification state of the raw material requires a significantly higher temperature of sintering of 1200 °C. In addition, some dedensification drawbacks may occur when using granules whose size is greater than 315 μm and therefore could induce unexpectedly a significant damage to materials. The observed trends may be useful for further applications of such Ghassoul clay in the silicate ceramics field.

Keywords

Ghassoul clay Stevensite Grain size selection Thermal transformations Sintering 

References

  1. 1.
    Gridi-Bennadji F, Lecomte-Nana GL, Bonnet JP, Rossignol S. Rheological properties of montmorillonitic clay suspensions: effect of firing and interlayer cations. J Eur Ceram Soc. 2012;32(11):2809–17.CrossRefGoogle Scholar
  2. 2.
    Lee CE, Chandra S, Leong YK. Structural recovery behaviour of kaolin, bentonite and K-montmorillonite slurries. Powder Technol. 2012;223:105–9.CrossRefGoogle Scholar
  3. 3.
    Tang A, Su L, Li C. Effect of dry grinding on the physicochemical properties of silica materials prepared from kaolin residue. Powder Technol. 2012;218:86–9.CrossRefGoogle Scholar
  4. 4.
    Lecomte-Nana GL, Bonnet JP, Blanchart P. Investigation of the sintering mechanisms of kaolin-muscovite. Appl Clay Sci. 2011;51(4):445–51.CrossRefGoogle Scholar
  5. 5.
    Ptáček P, Šoukal F, Opravil T, Havlica J, Brandštetr J. The kinetic analysis of the thermal decomposition of kaolinite by DTG technique. Powder Technol. 2011;208(1):20–5.CrossRefGoogle Scholar
  6. 6.
    Wattanasiriwech D, Srijan K, Wattanasiriwech S. Vitrification of illitic clay from Malaysia. Appl Clay Sci. 2009;43(1):57–62.CrossRefGoogle Scholar
  7. 7.
    Lecomte GL, Bonnet JP, Blanchart P. A study of the influence of muscovite on the thermal transformations of kaolinite from room temperature up to 1,100 °C. J Mater Sci. 2007;42(20):8745–52.CrossRefGoogle Scholar
  8. 8.
    Chandrasekhar S, Ramaswamy S. Investigation on a gray kaolin from south east India. Appl Clay Sci. 2007;37(1–2):32–46.CrossRefGoogle Scholar
  9. 9.
    Lecomte G, Blanchart P. Textured mullite at muscovite-kaolinite interface. J Mater Sci. 2006;41(15):4937–43.CrossRefGoogle Scholar
  10. 10.
    Castelein O, Soulestin B, Bonnet JP, Blanchart P. The influence of heating rate on the thermal behaviour and mullite formation from a kaolin raw material. Ceram Int. 2001;27(5):517–22.CrossRefGoogle Scholar
  11. 11.
    Temimi M, Ben Amor K, Camps JP. Making building products by extrusion and cement stabilization: limits of the process with montmorillonite clay. Appl Clay Sci. 1998;13(4):245–53.CrossRefGoogle Scholar
  12. 12.
    Rybnikov VA. Possibilities of the use of nevyansky kaolins with a low sintering temperature. Glass Ceram. 1957;13(6):269–72.CrossRefGoogle Scholar
  13. 13.
    Keidar O, Lapides I, Shoval S, Yariv S. Thermogravimetry and differential thermal analysis of montmorillonite treated with 1,4-diaminoanthraquinone. J Therm Anal Calorim. 2015;120(1):33–43.CrossRefGoogle Scholar
  14. 14.
    Paliesková J, Pajtášová M, Feriancová A, Ondrušová D, Holcová K, Vavro Jr. J, Mojumdar S. Thermal properties of fillers based on organoclays in the polymeric materials. J Therm Anal Calorim. 2014;119(2):939–43.CrossRefGoogle Scholar
  15. 15.
    Bakop TT, Fongang RTT, Melo UC, Kamseu E, Miselli P, Leonelli C. Sintering behaviors of two porcelainized stoneware compositions using pegmatite and nepheline syenite minerals. J Therm Anal Calorim. 2013;114(1):113–23.CrossRefGoogle Scholar
  16. 16.
    Cases J, Villiéras F, Michot L. Les phénomènes d’adsorption, d’échange ou de rétention à l’interface solide—solution aqueuse. 1. Connaissance des propriétés structurales, texturales et superficielles des solides. Earth planet Sci. 2000;331:763–73.Google Scholar
  17. 17.
    Chen X. Influence des ions aluminates sur la composition, la structure et les propriétés cohésives des hydrosilicates de calcium, constituants principaux de la pâte de ciment Portland hydratée, in, Ph.d. Thesis, Université de Bourgogne, 2007, 202.Google Scholar
  18. 18.
    Bouna L, Rhouta B, Amjoud M, Jada A, Maury F, Daoudi L, Senocq F. Correlation between electrokinetic mobility and ionic dyes adsorption of Moroccan stevensite. Appl Clay Sci. 2010;48(3):527–30.CrossRefGoogle Scholar
  19. 19.
    Benhammou A, Yaacoubi A, Nibou L, Tanouti B. Chromium(VI) adsorption from aqueous solution onto Moroccan Al-pillared and cationic surfactant stevensite. J Hazard Mater. 2007;140(1–2):104–9.CrossRefGoogle Scholar
  20. 20.
    Benhammou A, Yaacoubi A, Nibou L, Tanouti B. Adsorption of metal ions onto Moroccan stevensite: kinetic and isotherm studies. J Colloid Interface Sci. 2005;282(2):320–6.CrossRefGoogle Scholar
  21. 21.
    Benhammou A, Yaacoubi A, Nibou L, Tanouti B. Study of the removal of mercury(II) and chromium(VI) from aqueous solutions by Moroccan stevensite. J Hazard Mater. 2005;117(2–3):243–9.CrossRefGoogle Scholar
  22. 22.
    El Mouzdahir Y, Elmchaouri A, Mahboub R, ElAnssari A, Gil A, Korili SA, Vicente MA. Interaction of stevensite with Cd2+ and Pb2+ in aqueous dispersions. Appl Clay Sci. 2007;35(1–2):47–58.CrossRefGoogle Scholar
  23. 23.
    Carpentier S, Moilleron R, Beltran C, Hervé D, Thévenot D. Quality of dredged material in the river Seine basin (France). II. Micropollutants. Sci Total Environ. 2002;299:57–72.CrossRefGoogle Scholar
  24. 24.
    Bejjaoui R, Benhammou A, Nibou L, Tanouti B, Bonnet JP, Yaacoubi A, Ammar A. Synthesis and characterization of cordierite ceramic from Moroccan stevensite and andalusite. Appl Clay Sci. 2010;49(3):336–40.CrossRefGoogle Scholar
  25. 25.
    Chenu C, Plante AF. Clay-sized organo-mineral complexes in a cultivation chronosequence: revisiting the concept of the “primary organo-mineral complexes. Eur J Soil Sci. 2006;57:596–607.CrossRefGoogle Scholar
  26. 26.
    Christian J. Effet mössbauer et applications à la physique du solide. Pure Appl Chem. 1976;48:53–64.Google Scholar
  27. 27.
    Christensen B. Carbon in primary and secondary organo-mineral complexes. In: Carter, Stewart, editors. Structure and organic matter storage in agricultural soils. 1996. p. 97–161.Google Scholar
  28. 28.
    Clara H, Handy RL. Characteristics of lime retention by montmorillonitic clays. Highway Res Rec. 1963;29:55–69.Google Scholar
  29. 29.
    Trindade MJ, Dias MI, Coroado J, Rocha F. Mineralogical transformations of calcareous rich clays with firing: a comparative study between calcite and dolomite rich clays from Algarve. Port Appl Clay Sci. 2009;42(3–4):345–55.CrossRefGoogle Scholar
  30. 30.
    Serra MF, Acebedo MF, Conconi MS, Suarez G, Aglietti EF, Rendtorff NM. Thermal evolution of the mechanical properties of calcareous earthenware. Ceram Int. 2014;40:1709–16.CrossRefGoogle Scholar
  31. 31.
    Tschegg C, Ntaflos T, Hein I. Thermally triggered two-stage reaction of carbonates and clay during ceramic firing—A case study on Bronze Age Cypriot ceramics. Appl Clay Sci. 2009;43:69–78.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • G. L. Lecomte-Nana
    • 1
  • Y. El Hafiane
    • 2
  • A. Badaz
    • 1
  • N. Tessier-Doyen
    • 1
  • Y. Abouliatim
    • 2
  • A. Smith
    • 1
  • L. Nibou
    • 2
  • B. Tanouti
    • 3
  1. 1.Laboratoire Science des Procédés Céramiques et de Traitements de Surface (SPCTS, UMR CNRS 7315)Centre Européen de la Céramique - Ecole Nationale Supérieure de Céramique IndustrielleLimoges CedexFrance
  2. 2.Laboratoire Matériaux Procédés Environnement Qualité, LMPEQUniversité Cadi Ayyad - Ecole Nationale des Sciences Appliquées de SafiSafiMaroc
  3. 3.Laboratoire de la Matière Condensée et de l’Environnement, LMCEUniversité Cadi Ayyad - Faculté des Sciences SemlaliaMarrakechMaroc

Personalised recommendations