Skip to main content
Log in

Comparison of thermal, mechanical and thermomechanical properties of poly(lactic acid) injection-molded into epoxy-based Rapid Prototyped (PolyJet) and conventional steel mold

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The number of renewable-resource-based and inherently biodegradable poly(lactic acid) (PLA) products is growing in the market, resulting in an increasing demand to produce even small series of injection-molded PLA prototypes for testing purposes by using rapid molds. In our research, it was first demonstrated that it is possible to use epoxy-based molds made by PolyJet Rapid Prototyping technology for conventional injection molding to produce small series of PLA parts. The effect of mold material, namely conventional steel mold and epoxy-based PolyJet mold, was analyzed on the thermal and mechanical properties of the injection-molded products. PLA was used with no, moderate and high nucleating agent contents [talc and poly(ethylene glycol)] to obtain a model material with slow, moderate and high crystallization rates, respectively. It was demonstrated that the mold used and thus the thermal conductivity of the mold had significant effect on the crystallinity of the PLA parts and thus on its mechanical and thermomechanical properties. Finally, it was found that it is possible to mimic the thermomechanical properties of nucleated PLA injected into hot mold used for mass production by injecting it into the epoxy-based PolyJet mold used for small series production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Wholers T. Wholers report 2012. Colorado: Wohlers Associates; 2012.

    Google Scholar 

  2. Gebhardt A. Understanding additive manufacturing. Munich: Carl Hanser Verlag; 2011.

    Book  Google Scholar 

  3. Hopkinson N, Dickens P. A comparison between stereolithography and aluminium injection moulding tooling. Rapid Prototyping J. 2000;6:253–8.

    Article  Google Scholar 

  4. Colton JS, Lebaut Y. Thermal effects on stereolithography injection mold inserts. Polym Eng Sci. 2000;40:1360–8.

    Article  CAS  Google Scholar 

  5. Flieger M, Kantorová M, Prell A, Rezanka T, Votruba J. Biodegradable plastics from renewable resources. Folia Microbiol. 2003;48:27–44.

    Article  CAS  Google Scholar 

  6. Imre B, Renner K, Pukánszky B. Interactions, structure and properties in poly(lactic acid)/thermoplastic polymer blends. Express Polym Lett. 2014;8:2–14.

    Article  CAS  Google Scholar 

  7. Kovács JG, Nagy P, Oroszlány Á, Pavlik A, Hidas P. Testing of prototype interference screw for ACL reconstruction in porcine femurs. Biomech Hung. 2012;4:7–15.

    Google Scholar 

  8. Oroszlány Á, Kovács JG. Gate type influence on thermal characteristics of injection molded biodegradable interference screws for ACL reconstruction. Int Commun Heat Mass. 2010;37:766–9.

    Article  CAS  Google Scholar 

  9. Karger-Kocsis J, Kéki S. Biodegradable polyester-based shape memory polymers: concepts of (supra)molecular architecturing. Express Polym Lett. 2014;8:397–412.

    Article  Google Scholar 

  10. Kimble LD, Bhattacharrya D, Fakirov S. Biodegradable microfibrillar polymer-polymer composites from poly(L-lactic acid)/poly(glycolic acid). Express Polym Lett. 2015;9:300–7.

    Article  CAS  Google Scholar 

  11. Auras R, Lim LT, Selke SEM, Tsuji H. Poly(lactic acid) synthesis, structures, properties, processing and applications. 1st ed. Hoboken: Wiley; 2010.

    Book  Google Scholar 

  12. Lim LT, Auras R, Rubino M. Processing technologies for poly(lactic acid). Prog Polym Sci. 2008;33:820–52.

    Article  CAS  Google Scholar 

  13. Tábi T, Sajó IE, Szabó F, Luyt AS, Kovács JG. Crystalline structure of annealed polylactic acid and its relation to processing. Express Polym Lett. 2010;4:659–68.

    Article  CAS  Google Scholar 

  14. Barrau S, Vanmansart C, Moreau M, Addad A, Stoclet G, Lefebre JM, Seguela R. Crystallization behavior or carbon nanotube-Polylactide nanocomposites. Macromolecules. 2011;44:6496–502.

    Article  CAS  Google Scholar 

  15. Pengju P, Zhichao L, Amin C, Yoshio I. Layered metal phosphonate reinforced poly(L-lactide) composites with a highly enhanced crystallization rate. Appl Mater Interfaces. 2009;1:402–11.

    Article  CAS  Google Scholar 

  16. Shusheng W, Changyu H, Junjia B, Lijing H, Xuemei W, Lisong D. Morphology, crystallisation and enzymatic degradation of poly(L-lactide) nucleated using layered metal phosphonates. Polym Int. 2011;60:284–95.

    Article  CAS  Google Scholar 

  17. Ping S, Guangyi C, Zhiyong W, Ying C, Wanxi Z, Jicai L. Rapid crystallization of poly(L-lactic acid) induced by a nanoscaled zinc citrate complex as nucleating agent. Polymer. 2012;53:4300–9.

    Article  CAS  Google Scholar 

  18. Harris AM, Lee EC. Improving mechanical performance of injection molded PLA by controlling crystallinity. J Appl Polym Sci. 2008;107:2246–55.

    Article  CAS  Google Scholar 

  19. Battegazzore D, Bocchini S, Frache A. Crystallisation kinetics of poly(lactic acid)-talc composites. Express Polym Lett. 2011;5:849–58.

    Article  CAS  Google Scholar 

  20. Kawamoto N, Sakai A, Horikoshi T, Urushihara T, Tobita E. Physical and mechanical properties of Poly(L-lactic acid) nucleated by dibenzoylhydrazide compound. J Appl Polym Sci. 2007;103:244–50.

    Article  CAS  Google Scholar 

  21. Kawamoto N, Sakai A, Horikoshi T, Urushihara T, Tobita E. Nucleating agent for Poly(L-lactic acid)—an optimization of chemical structure of hydrazide compound for advanced nucleation ability. J Appl Polym Sci. 2007;103:198–203.

    Article  CAS  Google Scholar 

  22. Zhaobin Q, Zhisheng L. Effect of orotic acid on the crystallisation kinetics and morphology of biodegradable poly(L-lactide) as an efficient nucleating agent. Ind Eng Chem Res. 2011;50:12299–303.

    Article  CAS  Google Scholar 

  23. Nam JY, Okamoto M, Okamoto H, Nakano M, Usuki A, Matsuda M. Morphology and crystallization kinetics in a mixture of low-molecular weight aliphatic amide and polylactide. Polymer. 2006;47:1340–7.

    Article  CAS  Google Scholar 

  24. Wen L, Xin Z. Effect of a novel nucleating agent on isothermal crystallisation of poly(L-lactic acid). Chin J Chem Eng. 2010;18:899–904.

    Article  CAS  Google Scholar 

  25. Kulinski Z, Piorkowska E. Crystallisation, structure and properties of plasticized poly(L-lactide). Polymer. 2005;46:10290–300.

    Article  CAS  Google Scholar 

  26. Saeidlou S, Huneault MA, Li H, Park CB. Poly(lactic acid) crystallisation. Prog Polym Sci. 2012;37:1657–77.

    Article  CAS  Google Scholar 

  27. Li H, Huneault MA. Effect of nucleation and plasticization on the crystallisation of poly(lactic acid). Polymer. 2007;48:6855–66.

    Article  CAS  Google Scholar 

  28. Tábi T, Suplicz A, Czigány T, Kovács JG. Thermal and mechanical analysis of injection moulded poly(lactic acid) filled with poly(ethylene glycol) and talc. J Therm Anal Calorim. 2014;118:1419–30.

    Article  CAS  Google Scholar 

  29. Tsuji H, Takai H, Saha SK. Isothermal and non-isothermal crystallisation behaviour of poly(L-lactic acid): effects of stereocomplex as nucleating agent. Polymer. 2006;47:3826–37.

    Article  CAS  Google Scholar 

  30. Rahman N, Kawai T, Matsuba G, Nishida K, Kanaya T, Watanabe H, Okamoto H, Kato M, Usuki A, Matsuda M, Nakajima K, Honma N. Effect of Polylactide stereocomplex on the crystallization behavior of Poly(L-lactic acid). Macromolecules. 2009;42:4739–45.

    Article  CAS  Google Scholar 

  31. Ozcelik B, Ozbay A, Demibras E. Influence of injection parameters and mold materials on mechanical properties of ABS in plastic injection molding. Int Commun Heat Mass. 2014;37:1359–65.

    Article  CAS  Google Scholar 

  32. Kovács JG, Bercsey T. Influence of mold properties on the quality of injection molded parts. Period Polytech Mech. 2005;49:115–22.

    Google Scholar 

  33. Kovács JG, Suplicz A. Thermally conductive polymer compounds for injection moulding: the synergetic effect of hexagonal boron-nitride and talc. J Reinf Plast Comp. 2013;32:1234–40.

    Article  CAS  Google Scholar 

  34. Cai H, Dave V, Gross RA, McCarthy SP. Effects of physical aging, crystallinity, and orientation on the enzymatic degradation of poly(lactic acid). J Polym Sci Pol Phys. 1998;34:2701–8.

    Google Scholar 

Download references

Acknowledgements

This paper was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. This publication was supported by the Italian–Hungarian and the Mexican–Hungarian bilateral agreement of the Hungarian Academy of Sciences. This work was supported by the Hungarian Scientific Research Fund (OTKA K105257, OTKA PD105995). This work is connected to the scientific program of the “Development of quality-oriented and harmonized R + D + I strategy and functional model at BME” project. This project is supported by the New Széchenyi Plan (Project ID: TÁMOP-4.2.1/B-09/1/KMR-2010-0002). The work reported in this paper has been developed in the framework of the project “Talent care and cultivation in the scientific workshops of BME” project. This project is supported by the Grant TÁMOP—4.2.2.B-10/1-2010-0009. The authors thank Arburg Hungária Kft. for the Arburg Allrounder 370S 700-290 injection molding machine, Lenzkes GmbH for the clamping tool system and Piovan Hungary Kft. for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Tábi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tábi, T., Kovács, N.K., Sajó, I.E. et al. Comparison of thermal, mechanical and thermomechanical properties of poly(lactic acid) injection-molded into epoxy-based Rapid Prototyped (PolyJet) and conventional steel mold. J Therm Anal Calorim 123, 349–361 (2016). https://doi.org/10.1007/s10973-015-4997-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4997-y

Keywords

Navigation