Skip to main content
Log in

Thermal and corrosion resistance of nanocomposite gradient TiAlSiN films

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This work aims to examine the resistance of nanocomposite TiAlSiN gradient films when exposed in high-temperature dry air and 3 % NaCl aqueous solution environments. This was mainly accomplished by thermogravimetric measurements (non-isothermal and isothermal) and potentiodynamic measurements. The thermal analysis results showed that these samples begin to oxidize at 800 °C, while over 900 °C the oxidation rate increases significantly. Isothermal measurements revealed that at 800 °C the mass gain after 12 h exposure is insignificant and at 900 °C it has very low value. Oxidations performed at higher temperatures resulted in elevated mass gain while a great percentage of the coating was transformed in oxides, which implies that the particular temperature range is out of the working limits of the material. The activation energy was also determined to be 200 kJ mol−1 from the thermal analysis outcomes. Finally, the as-coated samples were found to have distinguished corrosion resistance in the salt solution compared with the bare substrates and the commonly used TiN coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. ASM International. ASM Handbook. Properties and selection irons steels and high performance alloys, vol. 1. New York: ASM International; 1993. p. 1763.

    Google Scholar 

  2. Davis JR. Heat-resistant materials. 3rd ed. New York: ASM International; 1997.

    Google Scholar 

  3. The International Nickel Company. Standard Wrought Austenitic Stainless Steel, Manual 252, Materials Engineering. 1974.

  4. Birks N, Meier GH. Introduction to high temperature oxidation of metals. London: Edward Arnold; 1983.

    Google Scholar 

  5. Veprek S, Männling HD, Jilek M, Holubar P. Avoiding the high-temperature decomposition and softening of (Al1xTix)N coatings by the formation of stable superhard nc-(Al1xTix)N/a-Si3 N4 nanocomposite. Mater Sci Eng A. 2004;366:202–5.

    Article  CAS  Google Scholar 

  6. Pantazopoulos G, Papazoglou T, Psyllaki P, Sfantos G, Antoniou S, Papadimitriou K. Sliding wear behaviour of a liquid nitrocarburised precipitation-hardening (PH) stainless steel. Surf Coat Technol. 2004;187:77–85.

    Article  CAS  Google Scholar 

  7. Pantazopoulos G, Antoniou S. Wear-related failures of nitrocarburized steels: some microstructural and morphological observations. JFAPBC. 2004;6:51–7. doi:10.1361/15477020421755.

    Article  Google Scholar 

  8. Yoo YH, Le DP, Kim JG, Kim SK, Vinh PV. Corrosion behavior of TiN, TiAlN, TiAlSiN thin films deposited on tool steel in the 3.5 wt% NaCl solution. Thin Solid Films. 2008;516:3544–8.

    Article  CAS  Google Scholar 

  9. Knotek O, Böhmer M, Leyendecker T. On structure and properties of sputtered Ti and Al based hard compound films. J Vac Sci Technol. 1986;A4:2695–700.

    Article  Google Scholar 

  10. Jarms C, Stock H-R, Mayr P. Mechanical properties, structure and oxidation behaviour of Ti1-x Al x N-hard coatings deposited by pulsed D.C. plasma-assisted chemical vapour deposition (PACVD). Surf Coat Technol. 1998;108–109:206–10.

    Article  Google Scholar 

  11. McIntyre D, Greene JE, Hakansson G, Sundgren J-E, Munz W-D. Oxidation of metastable single-phase polycrystalline Ti 0.5Al0.5N films: kinetics and mechanisms. J Appl Phys. 1990;67:1542–53.

    Article  CAS  Google Scholar 

  12. Luo Q, Rainforth WM, Munz MD. Wear mechanisms of monolithic and multicomponent nitride coatings grown by combined arc etching and unbalanced magnetron sputtering. Surf Coat Technol. 2001;146–147:430–5.

    Article  Google Scholar 

  13. Harris SG, Doyle ED, Vlasveld AC, Audy J, Quick D. A study of the wear mechanisms of Ti1−x Al x N and Ti1−xy Al x Cr y N coated high-speed steel twist drills under dry machining conditions. Wear. 2003;254:723–34.

    Article  CAS  Google Scholar 

  14. Zhou ZF, Tam PL, Shum PW, Li KY. High temperature oxidation of CrTiAlN hard coatings prepared by unbalanced magnetron sputtering. Thin Solid Films. 2009;517:5243–7.

    Article  CAS  Google Scholar 

  15. Vennemann A, Stock H-R, Kohlscheen J, Rambadt S, Erkens G. Oxidation resistance of titanium–aluminium–silicon nitride coatings. Surf Coat Technol. 2003;174–175:408–15.

    Article  CAS  Google Scholar 

  16. Cremer R, Neuschutz D. A combinatorial approach to the optimization of metastable multicomponent hard coatings. Surf Coat Technol. 2001;146–147:229–36.

    Article  Google Scholar 

  17. PalDey S, Deevi SC. Single layer and multilayer wear resistant coatings of (Ti, Al)N: a review. Mater Sci Eng. 2003;A342:58–79.

    Article  CAS  Google Scholar 

  18. Huang F, Wei G, Barnard JA, Weaver ML. Microstructure and stress development in magnetron sputtered TiAlCr(N) films. Surf Coat Technol. 2001;146–147:391–7.

    Article  Google Scholar 

  19. Wadsworth I, Smith IJ, Donohue LA, Munz WD. Thermal stability and oxidation resistance of TiAlN/CrN multilayer coatings. Surf Coat Technol. 1997;94–95:15–321.

    Google Scholar 

  20. Munz WD, Donohue LA, Hovsepian PEh. Properties of various large-scale fabricated TiAlN- and CrN-based superlattice coatings grown by combined cathodic arc-unbalanced magnetron sputter deposition. Surf Coat Technol. 2000;125:269–77.

    Article  CAS  Google Scholar 

  21. Veprek S, Veprek-Heijman MGJ, Karvankova P, Prochazka J. Different approaches to superhard coatings and nanocomposites. Thin Solid Films. 2005;476:1–29.

    Article  CAS  Google Scholar 

  22. Wojtan MP, Karimi A, Cselle T, Morstein M. Conventional and high resolution TEM investigation of the microstructure of compositionally graded TiAlSiN thin films. Surf Coat Technol. 2004;177–178:376–81.

    Article  CAS  Google Scholar 

  23. Jiang N, Shen YG, Zhang HJ, Bao SN, Hou XY. Superhard nanocomposite Ti–Al–Si–N films deposited by reactive unbalanced magnetron sputtering. Mater Sci Eng B. 2006;135:1–9.

    Article  CAS  Google Scholar 

  24. Chang YY, Hsiao CY. High temperature oxidation resistance of multicomponent Cr–Ti–Al–Si–N coatings. Surf Coat Technol. 2009;204:992–6.

    Article  CAS  Google Scholar 

  25. Cholakova T, Chitanov V, Chaliampalias D, Kolaklieva L, Kakanakov R, Bahchedjiev Ch, Petkov N, Pashinski Ch, Vourlias G, Vouroutzis N, Polychroniadis E, Wang Y, Meletis EI. Study of the structural and mechanical properties of nanocrystalline TiAlSiN gradient coatings. J Nano Res. 2014;27:15–24.

    Article  CAS  Google Scholar 

  26. Kolaklieva L, Kakanakov R, Chaliampalias D, Vourlias G, Cholakova T, Pashinski Ch, Chitanov V, Bahchedjiev Ch, Petkov N, Polychroniadis E. Mechanical, structural and thermal properties of multilayered gradient nanocomposite coatings. J Nano Res. 2012;17:193–202.

    Article  CAS  Google Scholar 

  27. Carvahlo S, Vaz F, Rebouta L, Schneider D, Cavaleiro A, Alves E. Elastic properties of (Ti, Al, Si) N nanocomposite films. Surf Coat Technol. 2001;142–144:110–6.

    Article  Google Scholar 

  28. Stathokostopoulos D, Chaliampalias D, Pavlidou E, Paraskevopoulos KM, Chrissafis K, Vourlias G. Oxidation resistance of magnesium silicide under high-temperature air exposure. J Therm Anal Calorim. 2015;. doi:10.1007/s10973-015-4664-3.

    Google Scholar 

  29. Chaliampalias D, Vourlias G, Pavlidou E, Chrissafis K. High temperature oxidation of Cr–Mo–V tool steel in carbon dioxide. J Therm Anal Calorim. 2013;113(3):1309–15.

    Article  CAS  Google Scholar 

  30. Vourlias G, Chaliampalias D, Pavlidou E, Stergioudis G, Chrissafis K. Examination of zinc coatings on copper substrates by thermal analysis. J Therm Anal Calorim. 2013;111(1):49–55.

    Article  CAS  Google Scholar 

  31. Chaliampalias D, Vourlias G, Pavlidou E, Chrissafis K. Examination of the oxidation resistance of Cr–Mo–V tool steel by thermal analysis. J Therm Anal Calorim. 2012;108(2):677–84.

    Article  CAS  Google Scholar 

  32. Veprek S, Veprek-Heijman MJG. Industrial applications of superhard nanocomposite coatings. Surf Coat Technol. 2008;202:5063–73.

    Article  CAS  Google Scholar 

  33. Chang Y-Y, Chang C-P, Wang D-Y, Yang S-M, Wu W. High temperature oxidation resistance of CrAlSiN coatings synthesized by a cathodic arc deposition process. J Alloy Compd. 2008;461:336–41.

    Article  CAS  Google Scholar 

  34. Kelly RG, Scully JR, Shoesmith DW, Buchheit RG. Electrochemical techniques in corrosion science and engineering. New York: Marcel Dekker Inc.; 2003.

    Google Scholar 

  35. Vourlias G, Chaliampalias D, Zorba TT, Pavlidou E, Psyllaki P, Paraskevopoulos KM, Stergioudis G, Chrissafis K. A combined study of the oxidation mechanism and resistance of AISI D6 steel exposed at high temperature environments. Appl Surf Sci. 2011;257:6687–98.

    Article  CAS  Google Scholar 

  36. Pieraggi B. Calculations of parabolic reaction rate constants. Oxid Met. 1987;27:177–85.

    Article  CAS  Google Scholar 

  37. Levy M, Farrell P, Pettit F. Oxidation of some advanced single-crystal nickelbase superalloys in air at 2000 F (1093 ◦C). Corrosion. 1986;42:708–17.

    Article  CAS  Google Scholar 

  38. Pieraggi B, Rapp RA. Chromia scale growth in alloy oxidation and the reactive element effect. J Electrochem Soc. 1993;140:2844–50.

    Article  CAS  Google Scholar 

  39. Rafaja D, Poklad A, Klemm V, Schreiber G, Heger D, Šíma M, Dopita M. Some consequences of the partial crystallographic coherence between nanocrystalline domains in Ti–Al–N and Ti–Al–Si–N coatings. Thin Solid Films. 2006;514:240–9.

    Article  CAS  Google Scholar 

  40. Abrikosov IA, Knutsson A, Alling B, Tasnádi F, Lind H, Hultman L, Odén M. Phase stability and elasticity of TiAlN. Materials. 2011;4:1599–618.

    Article  CAS  Google Scholar 

  41. Çomakli O, Yetim T, Çelik A. The effect of calcination temperatures on wear properties of TiO2 coated CP–Ti. Surf Coat Technol. 2014;246:34–9.

    Article  CAS  Google Scholar 

  42. Zhu Y, Wang G, Wang H, Zhang S, Yang S. Tribological properties of porous PPS/PTFE composite filled with mesopore titanium oxide whisker. J Appl Polym Sci. 2013;129(4):2321–7.

    Article  CAS  Google Scholar 

  43. Hu L, Chen S, Xue P, Jiang Z, Meng Q. Wear behavior of (TiB2–TiC)–Ni/TiAl/Ti gradient materials prepared by the FAPAS process. Tribol Lett. 2013;49(2):313–22.

    Article  CAS  Google Scholar 

  44. Sumitomo T, Aizawa T, Yamamoto S. In-situ formation of self-lubricating tribo-films for dry machinability. Surf Coat Technol. 2005;200(5–6):1797–803.

    Article  CAS  Google Scholar 

  45. Woydt M, Skopp A, Dörfel I, Witke K. Wear engineering oxides/antiwear oxides. Tribol Trans. 1999;42(1):21–31.

    Article  CAS  Google Scholar 

  46. Orazem ME, Tribollet B. Electrochemcial impedance spectroscopy. New York: Wiley; 2008.

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported from ΙKY Fellowships of excellence for postgraduate studies in Greece—Siemens Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Vourlias.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaliampalias, D., Kolaklieva, L., Kakanakov, R. et al. Thermal and corrosion resistance of nanocomposite gradient TiAlSiN films. J Therm Anal Calorim 123, 169–179 (2016). https://doi.org/10.1007/s10973-015-4961-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4961-x

Keywords

Navigation