Thermal approach to evaluate the sintering–crystallization ability in a nepheline–forsterite-based glass-ceramics

Abstract

A glass in the SiO2–Al2O3–MgO–Na2O system was formulated using a non-conventional silica source and other pure raw materials. The thermal stability and crystallization mechanism have been studied by means of differential scanning calorimetry (DSC). Besides, the glass ability to sintering–crystallization has been examined by optical dilatometry, a non-contact technique allowing the acquisition of dilatometric data in the viscoelastic temperature region. The experimental data were confirmed with theoretical equations. X-ray diffraction and field emission scanning electron microscopy were used to verify the crystallization study and electron scanning microscopy to examine the fired sample microstructures. The prevalent crystallization mechanism has been evaluated from different parameters derived from characteristic temperatures of non-isothermal DSC curves, namely the working range (ΔT TS), reduced glass transition temperature (T gr), and the dissimilarity in crystallization temperature (ΔT p) between fine (<63 µm) and coarse (fragment) glass samples.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Hölland W, Beall G. Glass–ceramic technology. Westerville: Ed. The American Ceramic Society; 2002.

    Google Scholar 

  2. 2.

    Marotta A, Buri A, Branda F. Surface and bulk crystallization in non- isothermal devitrification of glasses. Thermochim Acta. 1980;40(3):397–403.

  3. 3.

    Abdel-Hameed SAM, El-kheshen AA. Thermal and chemical properties of diopside–wollastonite glass–ceramics in the SiO2–CaO–MgO system from raw materials. Ceram Int. 2003;29(3):265–9.

    Article  CAS  Google Scholar 

  4. 4.

    Öveçoglu ML, Kuban B, Özer H. Characterization and crystallization kinetics of a diopside-based glass–ceramic developed from glass industry raw materials. J Eur Ceram Soc. 1997;17(7):957–62.

    Article  Google Scholar 

  5. 5.

    Pogrebenkov VM, Shumkova VV, Pogrebenkova VV. Apatite–diopside bioglass ceramic composites. Glass Ceram. 2004;61(3–4):87–9.

    Article  CAS  Google Scholar 

  6. 6.

    Tulyaganov DU, Ribeiro MJ, Labrincha JA. Development of glass–ceramics by sintering and crystallization of fine powders of calcium–magnesium–aluminosilicate glass. Ceram Int. 2002;28(5):515–20.

    Article  CAS  Google Scholar 

  7. 7.

    Romero M, Kovacova M, Rincón JMa. Effect of particle size on kinetics crystallization of an iron-rich glass. J Mater Sci. 2008;43:4135–42.

    Article  CAS  Google Scholar 

  8. 8.

    Andreola F, Barbieri L, Lancellotti I, Bernardo E. Sintered glass–ceramics and glass–ceramic matrix composites from CRT panel glass. J Am Ceram Soc. 2005;88(7):1886–91.

    Article  CAS  Google Scholar 

  9. 9.

    Romero M, Hernandez-Crespo MS, Rincón JMa. Leaching behaviour of a glassy slag and derived glass ceramics from arc plasma vitrification of hospital wastes. Adv Appl Ceram. 2009;108:67–71.

    Article  CAS  Google Scholar 

  10. 10.

    Annual report rice: market developments and perspectives. Ente Italiano Risi; Dec. 2014. http://www.enterisi.it.

  11. 11.

    Prasad CS, Maiti KN, Venugopal R. Effect of substitution of quartz by rice husk ash and silica fume on the properties of whiteware compositions. Ceram Int. 2003;29:907–14.

    Article  CAS  Google Scholar 

  12. 12.

    Andreola F, Barbieri L, Bondioli F. Agricultural waste in the synthesis of coral ceramic pigment. Dyes Pigments. 2012;94:207–11.

    Article  CAS  Google Scholar 

  13. 13.

    Bondioli F, Andreola F, Barbieri L, Manfredini T, Ferrari AM. Effect of rice husk ash (RHA) in the synthesis of (Pr, Zr)SiO4 ceramic pigment. J Eur Ceram Soc. 2007;27:3483–8.

    Article  CAS  Google Scholar 

  14. 14.

    Wattanasiriwech D, Polpuak N, Danthaisong P, Wattanasiriwech S. Use of rice husk ash for quartz substitution in stoneware glazes. J Sci Ind Res India. 2008;67:455–60.

    CAS  Google Scholar 

  15. 15.

    Bondioli F, Barbieri L, Ferrari AM, Manfredini T. Characterization of rice husk ash and its recycling as quartz substitute for the production of ceramic glazes. J Am Ceram Soc. 2010;93:121–6.

    Article  CAS  Google Scholar 

  16. 16.

    Andreola F, Barbieri L, Bondioli F. Agri-food waste: an opportunity for the heavy clay sector. Brick World Rev. 2010;1:34–40.

    Google Scholar 

  17. 17.

    Nayak JP, Kumar S, Bera J. Sol–gel synthesis of bioglass–ceramics using rice husk ash as a source for silica and its characterization. J Non Cryst Solids. 2010;356:1447–51.

    Article  CAS  Google Scholar 

  18. 18.

    Naskar MK, Chatteljee M. A novel process for the synthesis of lithium aluminium silicate powders from rice husk ash and other water-based precursor materials. Mater Lett. 2005;59:998–1003.

    Article  CAS  Google Scholar 

  19. 19.

    Naskar MK, Chatterjee M. A novel process for the synthesis of cordierite (Mg2Al4Si5O18) powders from rice husk as hand other sources of silica and their comparative study. J Eur Ceram Soc. 2004;24:3499–508.

    Article  CAS  Google Scholar 

  20. 20.

    Martın MI, Andreola F, Barbieri L, Bondioli F, Lancellotti I, Rincón JMa, Romero M. Crystallization and microstructure of nepheline–forsterite glass–ceramics. Ceram Int. 2013;39:2955–66.

    Article  CAS  Google Scholar 

  21. 21.

    Andreola F, Martín MI, Ferrari AM, Lancellotti I, Bondioli F, Rincón JMa, Romero M, Barbieri L. Technological properties of glass-ceramic tiles obtained using rice husk ash as silica precursor. Ceram Int. 2013;39:5427–35.

    Article  CAS  Google Scholar 

  22. 22.

    Karamanov A, Dzhantova B, Paganelli M, Sighinolfi D. Glass transition temperature and activation energy of sintering by optical dilatometry. Tecmochim Acta. 2013;553:1–7.

    Article  CAS  Google Scholar 

  23. 23.

    Paganelli M. Double-beam optical dilatometry. Ceram Forum Int. 2004;81(6–7):50–6.

    Google Scholar 

  24. 24.

    Lendvayova S, Moricova K, Jona E, Uherkova S, Kraxner J, Pavlik V, Durny R, Mojumdar SC. Thermal properties of oxide glasses. Part V. Effect of added Co and Ni oxides on the thermal stability of Li2O·2SiO glass system. J Therm Anal Calorim. 2013;112:1133–6.

    Article  CAS  Google Scholar 

  25. 25.

    Reben M, Sroda M. Influence of fluorine on thermal properties of lead oxyfluride glass. J Therm Anal Calorim. 2013;113:77–81.

    Article  CAS  Google Scholar 

  26. 26.

    Heireche MM, Belhadji M, Hakiki NE. Non isothermal crystallisation kinetics study on Se 90−x In10Sbx (x = 0–5) chalcogenide glasses. J Therm Anal Calorim. 2013;114:195–203.

    Article  CAS  Google Scholar 

  27. 27.

    Sharda S, Sharma S, Sharma P, Sharma V. Glass transition and crystallization kinetics analysis of Sb–Se–Ge chalcogenide glasses. J Therm Anal Calorim. 2014;115:361–6.

    Article  CAS  Google Scholar 

  28. 28.

    Svoboda R. How to determine activation energy of glass transition. J Therm Anal Calorim. 2014;118:1721–32.

    Article  CAS  Google Scholar 

  29. 29.

    Larson AC, Von Dreele RB. General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR. 2000.

  30. 30.

    Toby BH. EXPGUI: a graphical user interface for GSAS. J Appl Cryst. 2001;34:210–3.

    Article  CAS  Google Scholar 

  31. 31.

    Real C, Alcala MC, Criado JM. Preparation of silica from RHA. J Am Ceram Soc. 1996;79:2012–6.

    Article  CAS  Google Scholar 

  32. 32.

    Shinohara Y, Kohyama N. Quantitative analysis of tridymite and cristobalite crystallised in rice husk ash by heating. Ind Health. 2004;42:277–85.

    Article  CAS  Google Scholar 

  33. 33.

    Hamawy EMA, Esmat MA, El-Meliegy EAM. Preparation of nepheline glass–ceramics for dental applications. Mater Chem Phys. 2008;112:432–5.

    Article  CAS  Google Scholar 

  34. 34.

    Hamzawy EMA, Khater GA. Crystallization of processed nepheline syenite–magnesite glasses. Adv Appl Ceram. 2005;104:277–81.

    Article  CAS  Google Scholar 

  35. 35.

    Thakur RL, Thiagarajan S. Studies in catalyzed crystallization of glasses: a DTA method. Cent Glass Ceram Res Inst Bull. 1966;13:33–45.

    Google Scholar 

  36. 36.

    Turnbull D. Under what conditions can a glass be formed. Contemp Phys. 1969;10:473–88.

    Article  CAS  Google Scholar 

  37. 37.

    Zanotto ED. Isothermal and adiabatic nucleation in glass. J Non-Cryst Solids. 1987;89:361–70.

    Article  CAS  Google Scholar 

  38. 38.

    Zanotto ED, Weinberg MC. Trends in homogeneous crystal nucleation in oxide glasses. Phys Chem Glasses. 1989;30:186–92.

    CAS  Google Scholar 

  39. 39.

    English S, Turner WES. The heat expansion of soda-lime glasses. J Soc Glass Technol. 1919;3:238–9.

    CAS  Google Scholar 

  40. 40.

    Hirose M, Kobayashi T, Maeda K. Transparency and mechanical properties of glass–ceramics including nepheline–kalsilite solid solution. Reports Res. Lab. Asahi Glass Co. Ltd. 2005; 55:1–7.

Download references

Acknowledgements

The authors thank Eng. Chiara Venturelli (Expert Lab. Service) for her experimental assistance with the optical non-contact dilatometric measures.

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. Andreola.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Andreola, F., Barbieri, L., Lancellotti, I. et al. Thermal approach to evaluate the sintering–crystallization ability in a nepheline–forsterite-based glass-ceramics. J Therm Anal Calorim 123, 241–248 (2016). https://doi.org/10.1007/s10973-015-4960-y

Download citation

Keywords

  • Glass-ceramics
  • Nepheline
  • Forsterite
  • Sintering–crystallization
  • Optical dilatometry (ODL)
  • Differential scanning calorimetry (DSC)