Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 123, Issue 1, pp 241–248 | Cite as

Thermal approach to evaluate the sintering–crystallization ability in a nepheline–forsterite-based glass-ceramics

  • F. AndreolaEmail author
  • L. Barbieri
  • I. Lancellotti
  • M. I. Martín
  • J. Ma. Rincòn
  • M. Romero
Article

Abstract

A glass in the SiO2–Al2O3–MgO–Na2O system was formulated using a non-conventional silica source and other pure raw materials. The thermal stability and crystallization mechanism have been studied by means of differential scanning calorimetry (DSC). Besides, the glass ability to sintering–crystallization has been examined by optical dilatometry, a non-contact technique allowing the acquisition of dilatometric data in the viscoelastic temperature region. The experimental data were confirmed with theoretical equations. X-ray diffraction and field emission scanning electron microscopy were used to verify the crystallization study and electron scanning microscopy to examine the fired sample microstructures. The prevalent crystallization mechanism has been evaluated from different parameters derived from characteristic temperatures of non-isothermal DSC curves, namely the working range (ΔT TS), reduced glass transition temperature (T gr), and the dissimilarity in crystallization temperature (ΔT p) between fine (<63 µm) and coarse (fragment) glass samples.

Keywords

Glass-ceramics Nepheline Forsterite Sintering–crystallization Optical dilatometry (ODL) Differential scanning calorimetry (DSC) 

Notes

Acknowledgements

The authors thank Eng. Chiara Venturelli (Expert Lab. Service) for her experimental assistance with the optical non-contact dilatometric measures.

References

  1. 1.
    Hölland W, Beall G. Glass–ceramic technology. Westerville: Ed. The American Ceramic Society; 2002.Google Scholar
  2. 2.
    Marotta A, Buri A, Branda F. Surface and bulk crystallization in non- isothermal devitrification of glasses. Thermochim Acta. 1980;40(3):397–403.Google Scholar
  3. 3.
    Abdel-Hameed SAM, El-kheshen AA. Thermal and chemical properties of diopside–wollastonite glass–ceramics in the SiO2–CaO–MgO system from raw materials. Ceram Int. 2003;29(3):265–9.CrossRefGoogle Scholar
  4. 4.
    Öveçoglu ML, Kuban B, Özer H. Characterization and crystallization kinetics of a diopside-based glass–ceramic developed from glass industry raw materials. J Eur Ceram Soc. 1997;17(7):957–62.CrossRefGoogle Scholar
  5. 5.
    Pogrebenkov VM, Shumkova VV, Pogrebenkova VV. Apatite–diopside bioglass ceramic composites. Glass Ceram. 2004;61(3–4):87–9.CrossRefGoogle Scholar
  6. 6.
    Tulyaganov DU, Ribeiro MJ, Labrincha JA. Development of glass–ceramics by sintering and crystallization of fine powders of calcium–magnesium–aluminosilicate glass. Ceram Int. 2002;28(5):515–20.CrossRefGoogle Scholar
  7. 7.
    Romero M, Kovacova M, Rincón JMa. Effect of particle size on kinetics crystallization of an iron-rich glass. J Mater Sci. 2008;43:4135–42.CrossRefGoogle Scholar
  8. 8.
    Andreola F, Barbieri L, Lancellotti I, Bernardo E. Sintered glass–ceramics and glass–ceramic matrix composites from CRT panel glass. J Am Ceram Soc. 2005;88(7):1886–91.CrossRefGoogle Scholar
  9. 9.
    Romero M, Hernandez-Crespo MS, Rincón JMa. Leaching behaviour of a glassy slag and derived glass ceramics from arc plasma vitrification of hospital wastes. Adv Appl Ceram. 2009;108:67–71.CrossRefGoogle Scholar
  10. 10.
    Annual report rice: market developments and perspectives. Ente Italiano Risi; Dec. 2014. http://www.enterisi.it.
  11. 11.
    Prasad CS, Maiti KN, Venugopal R. Effect of substitution of quartz by rice husk ash and silica fume on the properties of whiteware compositions. Ceram Int. 2003;29:907–14.CrossRefGoogle Scholar
  12. 12.
    Andreola F, Barbieri L, Bondioli F. Agricultural waste in the synthesis of coral ceramic pigment. Dyes Pigments. 2012;94:207–11.CrossRefGoogle Scholar
  13. 13.
    Bondioli F, Andreola F, Barbieri L, Manfredini T, Ferrari AM. Effect of rice husk ash (RHA) in the synthesis of (Pr, Zr)SiO4 ceramic pigment. J Eur Ceram Soc. 2007;27:3483–8.CrossRefGoogle Scholar
  14. 14.
    Wattanasiriwech D, Polpuak N, Danthaisong P, Wattanasiriwech S. Use of rice husk ash for quartz substitution in stoneware glazes. J Sci Ind Res India. 2008;67:455–60.Google Scholar
  15. 15.
    Bondioli F, Barbieri L, Ferrari AM, Manfredini T. Characterization of rice husk ash and its recycling as quartz substitute for the production of ceramic glazes. J Am Ceram Soc. 2010;93:121–6.CrossRefGoogle Scholar
  16. 16.
    Andreola F, Barbieri L, Bondioli F. Agri-food waste: an opportunity for the heavy clay sector. Brick World Rev. 2010;1:34–40.Google Scholar
  17. 17.
    Nayak JP, Kumar S, Bera J. Sol–gel synthesis of bioglass–ceramics using rice husk ash as a source for silica and its characterization. J Non Cryst Solids. 2010;356:1447–51.CrossRefGoogle Scholar
  18. 18.
    Naskar MK, Chatteljee M. A novel process for the synthesis of lithium aluminium silicate powders from rice husk ash and other water-based precursor materials. Mater Lett. 2005;59:998–1003.CrossRefGoogle Scholar
  19. 19.
    Naskar MK, Chatterjee M. A novel process for the synthesis of cordierite (Mg2Al4Si5O18) powders from rice husk as hand other sources of silica and their comparative study. J Eur Ceram Soc. 2004;24:3499–508.CrossRefGoogle Scholar
  20. 20.
    Martın MI, Andreola F, Barbieri L, Bondioli F, Lancellotti I, Rincón JMa, Romero M. Crystallization and microstructure of nepheline–forsterite glass–ceramics. Ceram Int. 2013;39:2955–66.CrossRefGoogle Scholar
  21. 21.
    Andreola F, Martín MI, Ferrari AM, Lancellotti I, Bondioli F, Rincón JMa, Romero M, Barbieri L. Technological properties of glass-ceramic tiles obtained using rice husk ash as silica precursor. Ceram Int. 2013;39:5427–35.CrossRefGoogle Scholar
  22. 22.
    Karamanov A, Dzhantova B, Paganelli M, Sighinolfi D. Glass transition temperature and activation energy of sintering by optical dilatometry. Tecmochim Acta. 2013;553:1–7.CrossRefGoogle Scholar
  23. 23.
    Paganelli M. Double-beam optical dilatometry. Ceram Forum Int. 2004;81(6–7):50–6.Google Scholar
  24. 24.
    Lendvayova S, Moricova K, Jona E, Uherkova S, Kraxner J, Pavlik V, Durny R, Mojumdar SC. Thermal properties of oxide glasses. Part V. Effect of added Co and Ni oxides on the thermal stability of Li2O·2SiO glass system. J Therm Anal Calorim. 2013;112:1133–6.CrossRefGoogle Scholar
  25. 25.
    Reben M, Sroda M. Influence of fluorine on thermal properties of lead oxyfluride glass. J Therm Anal Calorim. 2013;113:77–81.CrossRefGoogle Scholar
  26. 26.
    Heireche MM, Belhadji M, Hakiki NE. Non isothermal crystallisation kinetics study on Se 90−x In10Sbx (x = 0–5) chalcogenide glasses. J Therm Anal Calorim. 2013;114:195–203.CrossRefGoogle Scholar
  27. 27.
    Sharda S, Sharma S, Sharma P, Sharma V. Glass transition and crystallization kinetics analysis of Sb–Se–Ge chalcogenide glasses. J Therm Anal Calorim. 2014;115:361–6.CrossRefGoogle Scholar
  28. 28.
    Svoboda R. How to determine activation energy of glass transition. J Therm Anal Calorim. 2014;118:1721–32.CrossRefGoogle Scholar
  29. 29.
    Larson AC, Von Dreele RB. General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR. 2000.Google Scholar
  30. 30.
    Toby BH. EXPGUI: a graphical user interface for GSAS. J Appl Cryst. 2001;34:210–3.CrossRefGoogle Scholar
  31. 31.
    Real C, Alcala MC, Criado JM. Preparation of silica from RHA. J Am Ceram Soc. 1996;79:2012–6.CrossRefGoogle Scholar
  32. 32.
    Shinohara Y, Kohyama N. Quantitative analysis of tridymite and cristobalite crystallised in rice husk ash by heating. Ind Health. 2004;42:277–85.CrossRefGoogle Scholar
  33. 33.
    Hamawy EMA, Esmat MA, El-Meliegy EAM. Preparation of nepheline glass–ceramics for dental applications. Mater Chem Phys. 2008;112:432–5.CrossRefGoogle Scholar
  34. 34.
    Hamzawy EMA, Khater GA. Crystallization of processed nepheline syenite–magnesite glasses. Adv Appl Ceram. 2005;104:277–81.CrossRefGoogle Scholar
  35. 35.
    Thakur RL, Thiagarajan S. Studies in catalyzed crystallization of glasses: a DTA method. Cent Glass Ceram Res Inst Bull. 1966;13:33–45.Google Scholar
  36. 36.
    Turnbull D. Under what conditions can a glass be formed. Contemp Phys. 1969;10:473–88.CrossRefGoogle Scholar
  37. 37.
    Zanotto ED. Isothermal and adiabatic nucleation in glass. J Non-Cryst Solids. 1987;89:361–70.CrossRefGoogle Scholar
  38. 38.
    Zanotto ED, Weinberg MC. Trends in homogeneous crystal nucleation in oxide glasses. Phys Chem Glasses. 1989;30:186–92.Google Scholar
  39. 39.
    English S, Turner WES. The heat expansion of soda-lime glasses. J Soc Glass Technol. 1919;3:238–9.Google Scholar
  40. 40.
    Hirose M, Kobayashi T, Maeda K. Transparency and mechanical properties of glass–ceramics including nepheline–kalsilite solid solution. Reports Res. Lab. Asahi Glass Co. Ltd. 2005; 55:1–7.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • F. Andreola
    • 1
    Email author
  • L. Barbieri
    • 1
  • I. Lancellotti
    • 1
  • M. I. Martín
    • 2
  • J. Ma. Rincòn
    • 2
  • M. Romero
    • 2
  1. 1.Department of Engineering “Enzo Ferrari”- DIEF-University of Modena and Reggio EmiliaModenaItaly
  2. 2.Group of Glass and Ceramic Materials, Department of Construction, Eduardo Torroja Institute (IETcc)CSICMadridSpain

Personalised recommendations