Skip to main content
Log in

Precipitation of primary Fe-rich compounds in secondary AlSi9Cu3(Fe) alloys

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The precipitation of primary Fe-bearing compounds in a secondary AlSi9Cu3(Fe) alloy has been investigated over three levels of iron (0.80, 1.00, 1.20 mass%) and manganese (0.25, 0.40, 0.55 mass%), and two levels of chromium (0.06, 0.10 mass%), as well as different cooling rates (2, 10, 20 °C min−1). Differential scanning calorimetry and metallographic techniques have been used in order to quantitatively evaluate the nucleation temperature and the phase fraction of sludge particles. The temperature of sludge formation increases by increasing the initial concentrations of Fe, Mn and Cr, while an increase in the cooling rate shifts the sludge nucleation towards lower temperature. The amount of sludge particles increases progressively with the sludge factor but even more by decreasing the cooling rate. The combination of Fe, Mn and Cr levels, as well as cooling rate, allows to determine a threshold value that prevents the sludge formation. In the analysed range of composition and cooling conditions, functional equations have been developed in order to accurately predict the precipitation temperature and the phase fraction of sludge in AlSi9Cu3(Fe) die-casting alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kearney A. Melting furnaces: reverberatory furnaces and crucible furnaces. In: ASM International Handbook Committee, editors. Casting, ASM Handbook, Vol. 15. Materials Park, OH: ASM International, The Materials Information Society; 1992. p. 816–34.

  2. Crepeau PN. Effect of iron in Al–Si casting alloys: a critical review. AFS Trans. 1995;103:361–6.

    CAS  Google Scholar 

  3. Ji S, Yang W, Gao F, Watson D, Fan Z. Effect of iron on the microstructure and mechanical property of Al–Mg–Si–Mn and Al–Mg–Si diecast alloys. Mater Sci Eng A. 2012;564:130–9.

    Article  CAS  Google Scholar 

  4. Taghaddos E, Hejazi MM, Taghiabadi R, Shabestari SG. Effect of iron-intermetallics on the fluidity of 413 aluminum alloy. J Alloys Compd. 2009;468:539–45.

    Article  CAS  Google Scholar 

  5. Zedan Y, Samuel FH, Samuel AM, Doty HW. Effects of Fe intermetallics on the machinability of heat-treated Al-(7–11)% Si alloys. J Mater Process Technol. 2010;210:245–57.

    Article  CAS  Google Scholar 

  6. Chen CL, Richter A, Thomson RC. Investigation of mechanical properties of intermetallic phases in multi-component Al–Si alloys using hot-stage nanoindentation. Intermet. 2010;18:499–508.

    Article  CAS  Google Scholar 

  7. Ferraro S, Timelli G. Influence of sludge particles on the tensile properties of die-cast secondary aluminum alloys. Metall Mater Trans B. 2015;46:1022–34.

    Article  CAS  Google Scholar 

  8. Wallace J. A guide to correcting soldering. 1st ed. Des Plaines, IL: North American Die Casting Association; 2006.

    Google Scholar 

  9. Wang L, Makhlouf MM, Apelian D. Aluminium die casting alloys: alloy composition, microstructure, and properties-performance relationships. Int Mater Rev. 1995;40:221–38.

    Article  CAS  Google Scholar 

  10. Jorstad JL. Understanding sludge. Die Cast Eng. 1986;30:30–6.

  11. Gobrecht J. Settling-out of Fe, Mn and Cr in Al–Si casting alloys. Giesserei. 1975;62:263–6.

    CAS  Google Scholar 

  12. Dunn R. Aluminum melting prob1ems and their influence on furnace selection. Die Cast Eng. 1965;9:8–30.

    Google Scholar 

  13. Makhlouf MM, Apelian D. Casting characteristics of aluminum die casting alloys. http://metalcasting.govtools.us/reports/casting_characteristics_of_aluminum.pdf. Accessed 5 Feb 2002.

  14. Shabestari SG. The effect of iron and manganese on the formation of intermetallic compounds in aluminium-silicon alloys. Mater Sci Eng A. 2004;383:289–98.

    Article  Google Scholar 

  15. Flores A, Escobedo JC, Mendez M, Mendez J. Kinetics of the formation, growth and sedimentation of the phase Al15Fe, Mn3Si2 in Al–Si–Cu alloys. Proceedings of international die casting congress and exposition, Detroit, Michigan, USA, Sept 30–Oct 3, 1991, p. 293–7.

  16. Ghomashchi MR. Intermetallic compounds in an Al–Si alloy used in high pressure die-casting. Z Metallkunde. 1987;78:784–7.

    CAS  Google Scholar 

  17. Gustafsson G, Thorvaldsson T, Dunlop GL. The influence of Fe and Cr on the microstructure of cast Al–Si–Mg alloys. Met Trans A. 1986;17:45–52.

    Article  Google Scholar 

  18. Mackay RI, Gruzleski JE. Quantification of iron in aluminium-silicon foundry alloys via thermal analysis. Int J Cast Met Res. 1997;10:131–45.

    CAS  Google Scholar 

  19. Timelli G, Bonollo F. The influence of Cr content on the microstructure and mechanical properties of AlSi9Cu3(Fe) die casting alloys. Mat Sci Eng A. 2010;528:273–82.

    Article  CAS  Google Scholar 

  20. Wang L, Nguyen TT, Savage G, Davidson CJ. Thermal and flow modelling of ladling and injection in high pressure die casting process. Int J Cast Met Res. 2003;16:409–17.

    CAS  Google Scholar 

  21. EN 1706:2010. Aluminium and aluminium alloys—castings—chemical composition and mechanical properties.

  22. Timelli G, Ferraro S, Grosselle F, Bonollo F, Voltazza F, Capra L. Mechanical and microstructural characterization of diecast aluminium alloys. Metall Ital. 2011;101:5–17.

    Google Scholar 

  23. Hohne GWH, Hemminger WF, Flammersheim H-J. Differential scanning calorimetry. 2nd ed. Germany: Springer; 2003.

    Book  Google Scholar 

  24. Marchwica P, Sokolowski JH, Kierkus WT. Fraction solid evolution characteristics of AlSiCu alloys—dynamic baseline approach. J Achiev Mater Manuf Eng. 2011;47:115–36.

    Google Scholar 

  25. Bäckerud L, Chai G, Tamminen J. Solidification Characteristics of aluminum alloys, Vol. 2: foundry alloys. 1st ed. Des Plaines, IL: American Foundrymen’s Society Inc; 1990.

  26. Gowri S, Samuel FH. Effect of alloying elements on the solidification characteristics and microstructure of Al–Si–Cu–Mg–Fe 380 Alloy. Metall Mater Trans A. 1994;25:437–48.

    Article  Google Scholar 

  27. Mondolfo LF. Aluminium alloys: structure and properties. 1st ed. London: Butterworths; 1976.

    Google Scholar 

  28. Samuel AM, Samuel FH. Effect of alloying elements and dendrite arm spacing on the microstructure and hardness of an Al–Si–Cu–Mg–Fe–Mn (380) aluminium die-casting alloy. J Mater Sci. 1995;30:1698–708.

    Article  CAS  Google Scholar 

  29. Cao X, Campbell J. The solidification characteristics of Fe-rich intermetallics in Al-11.5Si-0.4 Mg cast alloys. Mater Sci Eng A 2004;35:1425–35.

  30. Ferraro S, Fabrizi A, Timelli G. Evolution of sludge particles in secondary die-cast aluminum alloys as function of Fe, Mn and Cr contents. Mater Chem Phys. 2015;153:168–79.

    Article  CAS  Google Scholar 

  31. Yang W, Ji S, Zhou X, Stone I, Scamans G, Thompson GE, et al. Heterogeneous nucleation of α-Al grain on primary α-AlFeMnSi intermetallic investigated using 3D SEM ultramicrotomy and HRTEM. Metall Mater Trans A. 2014;45:3971–80.

    Article  CAS  Google Scholar 

  32. Warmuzek M, Ratuszek W, Sęk-Sas G. Chemical inhomogeneity of intermetallic phases precipitates formed during solidification of Al–Si alloys. Mater Charact. 2005;54:31–40.

    Article  CAS  Google Scholar 

  33. Guo Z, Saunders N, Schillé JP, Miodownik AP. Material properties for process simulation. Mater Sci Eng A. 2009;499:7–13.

    Article  CAS  Google Scholar 

  34. Fabrizi A, Ferraro S, Timelli G. The influence of Fe, Mn and Cr additions on the formation of iron-rich intermetallic phases in an Al–Si die-casting alloy. In: Tiryakioĝlu M, Campbell J, Byczynski G, editors. Shape casting 5: international symposium 2014. Hoboken, New Jersey: Wiley; 2014. p. 277–84.

    Chapter  Google Scholar 

  35. Cao X, Saunders N, Campbell J. Effect of iron and manganese contents on convection-free precipitation and sedimentation of primary α-Al(FeMn)Si phase in liquid Al-11.5Si-0.4 Mg alloy. J Mater Sci. 2004;39:2303–14.

    Article  CAS  Google Scholar 

  36. Samuel AM, Samuel FH, Doty HW, Valtierra S. Effect of superheat, cooling rate and impurities on the formation of iron intermetallics in Al–Si die casting alloys. AFS Trans. 2001;109:679–96.

    CAS  Google Scholar 

  37. Cao X, Campbell J. Effect of melt superheating on convection-free precipitation and sedimentation of primary α-Fe phase in liquid al-11.5Si-0.4 Mg alloy. Int J Cast Met Res 2003;15:595–608.

  38. Khalifa W, Samuel FH, Gruzleski JE, Doty HW, Valtierra S. Nucleation of Fe-intermetallic phases in the Al–Si–Fe alloys. Metall Mater Trans A. 2005;36:1017–32.

    Article  Google Scholar 

  39. Terzi S, Taylor JA, Cho YH, Salvo L, Suéry M, Boller E, et al. In situ study of nucleation and growth of the irregular α-Al/β-Al5FeSi eutectic by 3-D synchrotron X-ray microtomography. Acta Mater. 2010;58:5370–80.

    Article  CAS  Google Scholar 

  40. Orozco-González P, Castro-Román M, Maldonado-Ruíz S, Haro-Rodríguez S, Equihua-Guillén F, Muñiz-Valdez R, et al. Nucleation of Fe-rich intermetallic phases on α-Al2O3 oxide films in Al–Si Alloys. J Miner Mater Charact Eng. 2015;3:15–25.

    Google Scholar 

Download references

Acknowledgements

This work was developed within the European Project MUSIC (MUlti-layers control & cognitive System to drive metal and plastic production line for Injected Components, FP7-FoF-ICT-2011.7.1, Contract No. 314145). The author would like to acknowledge Raffineria Metalli Capra Spa (Brescia, Italy) for the financial support to the research and the skilful contribution of SAEN Snc (Brugine, Italy) for high-pressure die-casting experiments. Many thanks are also due to Dr. J. Dalla Barba for the experimental contribution to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Timelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timelli, G., Capuzzi, S. & Fabrizi, A. Precipitation of primary Fe-rich compounds in secondary AlSi9Cu3(Fe) alloys. J Therm Anal Calorim 123, 249–262 (2016). https://doi.org/10.1007/s10973-015-4952-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4952-y

Keywords

Navigation