Skip to main content
Log in

Oxidation of high-temperature Cu–Al–Fe shape memory alloy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Isothermal oxidation behavior of the high-temperature Cu–13Al–5Fe (in mass, %) SMA on temperature range of 500–900 °C was studied using thermo-gravimetric method. TG curve showed that the alloy has linear oxidation characteristics. From thermo-gravimetric measurements, it was determined that the alloy shows abnormal oxidation characteristics at 600 °C. As K P values of the alloy at oxidation temperatures of 700 and 800 °C were calculated as 0.00166 mg cm−2 s−1 and 0.0022 mg cm−2 s−1, respectively, K P value at 600 °C was found as 0.0029 mg cm−2 s−1. DTA curve exhibited that reason of the abnormal oxidation behavior at 600 °C is the endothermic reaction which causes dissolution of Fe(Al,Cu) precipitates within matrix at 568.13 °C. XRD patterns of the oxidized samples were found to be compatible with the results obtained from thermo-gravimetric measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Otsuka K, Kakeshita T. Science and technology of shape-memory alloys: new developments. MRS Bull. 2002;27:91–100.

    Article  Google Scholar 

  2. Stoiber J, Gotthardt R, Van Humbeeck J. Hysteresis effects during martensitic transformation in Cu–Zn–Al shape memory alloys. In: Hornbogen E, Jost N, editors. 1st European Symposium on Martensitic Transformations in Science and Technology. Bochum, Germany; 1989. p. 297–304.

  3. Ma J, Karaman I, Noebe RD. High temperature shape memory alloys. Int Mater Rev. 2010;55:257–315.

    Article  CAS  Google Scholar 

  4. Ma YQ, Jiang JB, Xu HB. Martensitic transformation and thermal stability in Cu–Al–Co and Cu–Al–Zr alloys. Acta Metallurgica Sinica (English Letters). 2003;16:445–8.

    CAS  Google Scholar 

  5. Raju TN, Sampath V. Effect of ternary addition of iron on shape memory characteristics of Cu–Al alloys. J Mater Eng Perform. 2011;20:767–70.

    Article  CAS  Google Scholar 

  6. Raju TN, Sampath V. Influence of aluminium and iron contents on the transformation temperatures of Cu–Al–Fe shape memory alloys. Trans Indian Inst Met. 2011;64:165–8.

    Article  CAS  Google Scholar 

  7. Yang S, Su Y, Wang C, Liu X. Microstructure and properties of Cu–Al–Fe high-temperature shape memory alloys. Mater Sci Eng B. 2014;185:67–73.

    Article  CAS  Google Scholar 

  8. Yildiz K, Kök M, Dağdelen F. Cobalt addition effects on martensitic transformation and microstructural properties of high-temperature Cu–Al–Fe shape-memory alloys. J Therm Anal Calorim. 2015;120:1227–32.

    Article  CAS  Google Scholar 

  9. Kök M, Pirge G, Aydoğdu Y. Isothermal oxidation study on NiMnGa ferromagnetic shape memory alloy at 600–1000 °C. Appl Surf Sci. 2013;268:136–40.

    Article  CAS  Google Scholar 

  10. Kök M, Yildiz K. Oxidation parameters determination of Cu–Al–Ni–Fe shape-memory alloy at high temperatures. Appl Phys A. 2014;116:2045–50.

    Article  CAS  Google Scholar 

  11. Li Z, Qian S, Wang W. Characterization and oxidation behavior of NiCoCrAlY coating fabricated by electrophoretic deposition and vacuum heat treatment. Appl Surf Sci. 2011;257:4616–20.

    Article  CAS  Google Scholar 

  12. Adorno AT, Guerreiro MR, Benedetti AV. Thermal behavior of Cu–Al alloys near the α-Cu–Al solubility limit. J Therm Anal Calorim. 2001;65:221–9.

    Article  CAS  Google Scholar 

  13. Adorno AT, Guerreiro MR, Ribeiro CA, Guerreiro CTR. Influence of silver additions on the thermal behavior of the Cu-8 mass% Al alloy. J Therm Anal Calorim. 2001;64:1141–6.

    Article  CAS  Google Scholar 

  14. Silva RAG, Machado ES, Adorno AT, Magdalena AG, Carvalho TM. Completeness of β-phase decomposition reaction in Cu–Al–Ag alloys. J Therm Anal Calorim. 2012;109:927–31.

    Article  CAS  Google Scholar 

  15. Recarte V, Perez-Landazabal JI, Ibarra A, No ML, Juan JS. High temperature β phase decomposition process in a Cu–Al–Ni shape memory alloy. Mater Sci Eng A. 2004;378:238–42.

    Article  CAS  Google Scholar 

  16. Gaskell DR. Metallurgical Thermodynamics. In: Cahn RW, Haasen P, editors. Physical Metallurgy, Fourth, Revised and Enhanced edition. North-Holland (Printed in The Netherlands); 1996. p. 431.

Download references

Acknowledgements

The thermo-gravimetric analysis of samples was done by E. Ercan (Bitlis Eren University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koksal Yildiz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildiz, K. Oxidation of high-temperature Cu–Al–Fe shape memory alloy. J Therm Anal Calorim 123, 409–412 (2016). https://doi.org/10.1007/s10973-015-4912-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4912-6

Keywords

Navigation