Journal of Thermal Analysis and Calorimetry

, Volume 123, Issue 1, pp 421–430 | Cite as

Investigation of thermal decomposition of jarosite tailing waste

A prerequisite for comprehensive jarosite reuse and waste minimization
  • Mihone Kerolli-MustafaEmail author
  • Vilko Mandić
  • Lidija Ćurković
  • Juraj Šipušić


During the zinc production process from sulfidic ores, the jarosite residue is produced within the precipitate containing ammonia, iron, zinc and other metal sulfates. The process yield jarosite which has been dumped as a waste despite its acidity presents environmental hazard while high content of iron, zinc, lead, cadmium and other heavy metal compounds additionally presents further utilization possibilities. In this paper, the thermal decomposition of jarosite tailing waste collected in Mitrovica Industrial Park situated in Kosovo is investigated in order to get better understanding of its possible utilization as a source of valuable raw materials. Samples of jarosite tailing waste were taken at depths of 0.2, 1 and 2 m. The samples were characterized by means of powder X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectrometer (SEM/EDS), thermogravimetric analysis (TG) and differential thermal analysis (DTA). The results obtained from XRD confirmed the presence of ammonium jarosite in the investigated tailing waste samples. Results of TG–DTA indicated that the decomposition of jarosite samples occurs in four consecutive stages up to the temperature of 500 °C. On behalf of SEM/EDS analysis, jarosite samples yield poorly defined micron-sized morphology associated with high content of Fe and S, but also Pb, Cd, Zn and As. Composition of jarosite tailing waste was found depth dependent which should facilitate jarosite waste reuse at the investigated site.

Graphical Abstract


Jarosite Decomposition Characterization Thermal analysis 


  1. 1.
    Swayze GA, Desborough GA, Smith KS, Lowers HA, Hammarstrom JM, Diehl SF. Understanding contaminants associated with mineral deposits. US Geol Surv Circ. 2008;1328:8–13.Google Scholar
  2. 2.
    Katsioti M, Tsakiridis PE, Leonardou-Agatzini S, Oustadakis P. Examination of the jarosite-alunite precipitate addition in the raw meal for the production of sulfoaluminate cement clinker. J Hazard Mater. 2006;131:187–94.CrossRefGoogle Scholar
  3. 3.
    Gordon RB, Graedel TE, Bertram M, Fuse K, Lifset R, Rechberger H, Spatari S. The characterization of technological zinc cycles. Spat Resour Conserv Recycl. 2003;39:107–35.CrossRefGoogle Scholar
  4. 4.
    Jha VM, Kumar K, Singh RJ. Review of hydrometallurgical recovery of zinc from industrial wastes. Resour Conserv Recycl. 2001;33:1–22.CrossRefGoogle Scholar
  5. 5.
    Frost R, Wills RA, Kloprogge Th, Martens W. Thermal decomposition of ammonium jarosite (NH4)Fe3(SO4)2(OH)6. J Therm Anal Calorim. 2006;84:489–96.CrossRefGoogle Scholar
  6. 6.
    Drouet Ch, Navrotsky A. Synthesis, characterization, and thermochemistry of K-Na-H3O jarosites. Geochim Cosmochim Acta. 2002;11:2063–76.Google Scholar
  7. 7.
    Pappu A, Saxena M, Asolekar ShR. Jarosite characteristics and its utilization potentials. Sci Total Environ. 2005;359:232–43.CrossRefGoogle Scholar
  8. 8.
    Pappu A, Mohini S, Shyam A. Hazardous jarosite use in developing non-hazardous product for engineering application. J Hazard Mater. 2006;137:1589–99.CrossRefGoogle Scholar
  9. 9.
    Roca A, Patino F, Rivera I, Hernandez L, Perez M, Salinas E, Reyes M. Decomposition and cyanidation kinetics of the argentian ammonium jarosite in NaOH media. J Mex Chem Soc. 2007;51:47–54.Google Scholar
  10. 10.
    Basciano LC, Peterson RC. The crystal structure of ammoniojarosite, (NH4)Fe3(SO4)2(OH)6 and the crystal chemistry of the ammoniojarosite–hydronium jarosite solid-solution series. Miner Mag. 2007;71:427–41.CrossRefGoogle Scholar
  11. 11.
    Basciano LC, Peterson RC. Crystal chemistry of the natrojarosite-jarosite and natrojarosite-hydronium, jarosite solid-solution: a synthetic study with full Fe site occupancy. Am Miner. 2008;93:853–62.CrossRefGoogle Scholar
  12. 12.
    Lakshman SV, Dreizin EL, Schoenitz M. Evaluation of K-H3O jarosite as thermal witness material. J Therm Anal Calorim. 2014;117:141–9.CrossRefGoogle Scholar
  13. 13.
    Pulisova P, Masa B, Michalkova E, Vecernıkova E, Marıkova M, Bezdicka P, Murafa N, Subrt J. Thermal behaviour of natural and synthetic iron precipitates from mine drainage. J Therm Anal Calorim. 2014;116:625–32.CrossRefGoogle Scholar
  14. 14.
    Drouet Ch, Baron D, Navrotsky A. On the thermochemistry of the solid solution between jarosite and its chromate analog. Am Miner. 2003;88:1949–54.CrossRefGoogle Scholar
  15. 15.
    Frost R, Wills RA, Weier ML, Martens W. Thermal decomposition of synthetic argentojarosite—implications for silver production in medieval times. Thermochim Acta. 2005;437:30–3.CrossRefGoogle Scholar
  16. 16.
    Forraya FL, Smith AML, Drouet C, Navrotskya A, Wright K, Hudson-Edwards KA, Dubbin WE. Synthesis, characterization and thermochemistry of a Pb-jarosite. Geochim Cosmochim Acta. 2010;74:215–24.CrossRefGoogle Scholar
  17. 17.
    Frost RL, Palmer SJ, Kristof J, Horva E. Thermoanalytical studies of silver and lead jarosites and their solid solutions. J Therm Anal Calorim. 2010;101:73–9.CrossRefGoogle Scholar
  18. 18.
    Lakshman SV, Mohan S, Dreizin EL, Schoenitz M. Kinetics of thermal decomposition of a synthetic K-H3O jarosite analog. J Therm Anal Calorim. 2014;115:609–20.CrossRefGoogle Scholar
  19. 19.
    Kato T. The crystal structures of jarosite and svanbergite. Mineral J. 1977;8:419–30.CrossRefGoogle Scholar
  20. 20.
    Pelino M. Recycling of zinc hydrometallurgy wastes in glass and glass ceramic materials. Waste Manag. 2000;20:561–8.CrossRefGoogle Scholar
  21. 21.
    Frost R, Locke A, Wain D, Martinez-Frias J, Martens WN, Rull F. Thermal decomposition and X-ray diffraction of sulphate efflorescent minerals from El Jaroso Ravine, Sierra Almagrera, Spain. Thermochim Acta. 2006;460:9–14.CrossRefGoogle Scholar
  22. 22.
    Dutrizac JE, Chen TT. Synthesis and properties of V3+ analogues of jarosite- group minerals. Can Miner. 2003;41:479–88.CrossRefGoogle Scholar
  23. 23.
    Dutrizac JE, Jambor JL. Jarosites and their application to hydrometallurgy. Rev Miner Geochem. 2000;40:405–52.CrossRefGoogle Scholar
  24. 24.
    Kerolli-Mustafa M, Fajković H, Rončević S, Ćurković L. Assessment of metals risks from different depths of jarosite tailing waste of Trepça Zinc Industry, Kosovo based on BCR procedure. J Geochem Explor. 2015;148:161–8.CrossRefGoogle Scholar
  25. 25.
    HRN EN 12457–4. Croatian Standard on waste characterization. 2015.Google Scholar
  26. 26.
    ASTM D. 4239-11 Standard test method for sulphur in the analysis sample of coal and coke using high-temperature tube furnace combustion, Am Soc Test Mater SAD. 2011.Google Scholar
  27. 27.
    Sasaki K, Haga T, Hirajima T, Kurosowa T, Tsunekawa M. Distribution and transition of heavy metal in mine tailing damps. Mater Trans. 2011;43:2778–83.CrossRefGoogle Scholar
  28. 28.
    Ristić M, Musić S, Orehovec Z. Thermal decomposition of synthetic ammonium jarosite. J Mol Struct. 2005;744:295–300.CrossRefGoogle Scholar
  29. 29.
    Kerolli-Mustafa M, Bačić I, Ćurković L. Investigation of Jarosite process tailing waste by means of Raman and infrared spectroscopy. Mater wiss Werkst. 2013;4:768–73.CrossRefGoogle Scholar
  30. 30.
    Das GK, Anand S, Das RP. Jarosites: a review. Miner Process Extr Metall. 1996;16:185–210.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Mihone Kerolli-Mustafa
    • 1
    Email author
  • Vilko Mandić
    • 2
  • Lidija Ćurković
    • 3
  • Juraj Šipušić
    • 2
  1. 1.International Business College MitrovicaMitrovicaKosovo
  2. 2.Faculty of Chemical Engineering and TechnologyUniversity of ZagrebZagrebCroatia
  3. 3.Faculty of Mechanical Engineering and Naval ArchitectureUniversity of ZagrebZagrebCroatia

Personalised recommendations