Skip to main content
Log in

Effect of 70-kDa and 148-kDa dextran hydrogels on praziquantel solubility

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Praziquantel is an anthelmintic widely used in the treatment of schistosomiasis. Although a highly permeable drug, praziquantel is poorly soluble in water, limiting its bioavailability. Improving the solubility of poorly water-soluble drugs has become an important issue for analysis in pharmaceutical research. The use of dextran hydrogels is an advantageous strategy and the focus of extensive research. In this study, several hydrogels were developed from homologous polymer blends using 70 and 148 kDa dextrans in different proportions containing praziquantel, with the aim of evaluating the effects of polymeric release systems on the solubility of poorly water-soluble drugs such as praziquantel. Nine formulations were prepared, and the solubility of the drug incorporated was assessed. Three of the formations were selected to be characterized by DSC for the study in order to gain a better understanding of the thermal behavior of praziquantel incorporated into dextran hydrogels and the influence of polymers on the solubility of the drug, complemented by XRD and SEM techniques. According to the results, formation of crystallites of praziquantel occurred, probably due to the preparation procedures of the formulations, covering the surface of the polymer matrix and promoting a slight improvement in solubility. These data show that the use of hydrogels for the purposes of improving the solubility of poorly water-soluble drugs represents an effective strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Passerini N, Albertici B, Perissuti B, Rodriguez L. Evaluation of melt granulation and ultrasonic spray congealing as techniques to enhance the dissolution of praziquantel. Int J Pharm. 2006;318:92–102.

    Article  CAS  Google Scholar 

  2. Cioli D, Pica-Mattoccia L. Praziquantel. Parasitol Res. 2003;90:S3–9.

    Google Scholar 

  3. Souza ALR, Andreani T, Oliveira RN, Kill CP, Santos FK, Allegretti SM, Chaud MV, Souto EB, Silva AM, Gremião MPD. In vitro evaluation of permeation, toxicity and effect of praziquantel-loaded solid lipid nanoparticles against Schistosoma mansoni as a strategy to improve efficacy of the schistosomiasis treatment. Int J Pharm. 2014;463:31–7.

    Article  CAS  Google Scholar 

  4. Sadhu PS, Kumar SN, Chandrasekharam M, Pica-Mattoccia L, Cioli D, Rai VJ. Synthesis of new praziquantel analogues: potential candidates for the treatment of schistosomiasis. Bioorg Med Chem Lett. 2012;22:1103–6.

    Article  CAS  Google Scholar 

  5. Almeida AE, Souza ALR, Cassimiro DL, Gremião MPD, Ribeiro CA, Crespi MS. Thermal characterization of solid lipid nanoparticles containing praziquantel. J Therm Anal Calorim. 2012;108:333–9.

    Article  CAS  Google Scholar 

  6. Breda SA, Jimenez-Kairuruz AF, Manzo RH, Oliveira ME. Solubility behaviour and biopharmaceutical classification of novel high-solubility ciprofloxacin and norfloxacin pharmaceutical derivates. Inter Pharm. 2009;371:106–13.

    Article  CAS  Google Scholar 

  7. Chaud MV, Tamascia P, Lima AC, Paganelli MO, Gremião MPD, Freitas O. Solid dispersions with hydrogenated castor oil increase solubility, dissolution rate and intestinal absorption of praziquantel. Braz J Pharm Sci. 2010;46:473–81.

    Article  CAS  Google Scholar 

  8. Leong KW, Langer R. Polymeric controlled drug delivery. Adv Drug Deliv Rev. 1987;1:199–233.

    Article  Google Scholar 

  9. Thakur RRS, McMillan HL, Jones DS. Solvent induced phase inversion-based in situ forming controlled release drug delivery implants. J Control Release. 2014;176:8–23.

    Article  CAS  Google Scholar 

  10. Kim S, Kim J, Jeon O, Kwon IC, Park K. Engineered polymers for advanced drug delivery. Eur J Pharm Biopharm. 2009;71:420–30.

    Article  CAS  Google Scholar 

  11. Alvarez-Lorenzo C, Blanco-Fernadez B, Puga AM, Concheiro A. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv Drug Deliv Ver. 2013;65:1148–71.

    Article  CAS  Google Scholar 

  12. Prezotti FG, Cury BSF, Evangelista RC. Mucoadhesive beads of gellan gum/pectin intended to controlled delivery of drugs. Carbohydr Polym. 2014;113:286–95.

    Article  CAS  Google Scholar 

  13. Petronijevic Z, Maluckov B, Smelcerovic A. Crosslinking of polysaccharides with activated dimethylsulfoxide. Tetrahedron Lett. 2014;54:3210–4.

    Article  CAS  Google Scholar 

  14. Mocanu G, Nichifor M. Cationic amphiphilic dextran hydrogels with potential biomedical applications. Carbohydr Polym. 2014;99:235–41.

    Article  CAS  Google Scholar 

  15. Cutiongco MFA, Tan MH, Ng MYK, Visage CL, Yim EKF. Composite pullulan-dextran polysaccharide scaffold with interfacial polyelectrolyte complexation fibers: a platform with enhanced cell interaction and spatial distribution. Acta Biomater. 2014;10:4410–8.

    Article  CAS  Google Scholar 

  16. Beloqui A, Solinís MA, Rieux A, Préat V, Rodríguez-Gascón A. Dextran-protamine coated nanostructured lipid carriers as mucus-penetrating nanoparticles for lipophilic drugs. Int J Pharm. 2014;468:105–11.

    Article  CAS  Google Scholar 

  17. Coviello T, Matricardi P, Marianecci C, Alhaique F. Polysaccharide hydrogels for modified release formulations. J Cont Release. 2007;119:5–24.

    Article  CAS  Google Scholar 

  18. Lloyd LL, Kennedy JF, Methacanon P, Paterson M, Knill CJ. Carbohydrate polymers as wound management aids. Carbohydr Polym. 1998;37:315–22.

    Article  CAS  Google Scholar 

  19. Hiemstra C, van der Aa LJ, Zhong Z, Dijkstra PJ, Feijen J. Novel in situ forming, degradable dextran hydrogels by Michael addition chemistry: synthesis, rheology, and degradation. Macromalecules. 2007;40:1165–73.

    Article  CAS  Google Scholar 

  20. Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev. 2012;64:49–60.

    Article  Google Scholar 

  21. Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev. 2008;60:1638–49.

    Article  CAS  Google Scholar 

  22. Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50:27–46.

    Article  CAS  Google Scholar 

  23. van Nostrum CF, Hennink WE. Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev. 2012;64:223–36.

    Article  Google Scholar 

  24. Hiemstra C, van der Aa LJ, Zhong Z, Dijkstra PJ, Feijen J. Rapidly in situ-forming degradable hydrogels from dextran thiols through Michael Addition. Biomacromalecules. 2007;8:1548–56.

    Article  CAS  Google Scholar 

  25. Chadha R, Bhandari S. Drug-excipient compatibility screening—role of thermoanalytical and spectroscopic techniques. J Pharm Biomed Anal. 2014;87:82–97.

    Article  CAS  Google Scholar 

  26. Nunes RS, Semaan FS, Riga AT, Cavalheiro ETG. Thermal behavior of verapamil hydrochloride and its association with excipients. J Therm Anal Calorim. 2009;97:349–53.

    Article  CAS  Google Scholar 

  27. Oliveira MA, Yoshida MI, Gomes ECL, Mussel WN, Viana-Soares VD, Pianetti GA. Análise Térmica aplicada à caracterização da sinvastatina em formulações farmacêuticas. Quim Nova. 2010;33:1653–7.

    Article  Google Scholar 

  28. Campos FS, Cassimiro DL, Crespi MS, Almeida AE, Gremião MPD. Preparation and characterization of Dextran-70 hydrogel for controlled release of praziquantel. Braz J Pharm Sci. 2013;49:75–83.

    Article  CAS  Google Scholar 

  29. Nepal PR, Han H, Choi H. Enhancement of solubility and dissolution of Coenzyme Q10 using solid dispersion formulation. Int J Pharm. 2010;383:147–53.

    Article  CAS  Google Scholar 

  30. Vippagunta SR, Maul KA, Tallavajhala S, Grant DJW. Solid-state characterization of nifedipine solid dispersions. Int Pharm. 2002;236:111–23.

    Article  CAS  Google Scholar 

  31. Abdullah M, Khairurrijal. Derivation of Scherrer relation using an approach in basic physics course. J Nanosains Nanotek. 2008;1:28–32.

    Google Scholar 

  32. Uvarov V, Popov I. Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials. Mater Charact. 2013;85:111–23.

    Article  CAS  Google Scholar 

  33. Stenekes RJH, Talsma H, Hennink WE. Formulation of dextran hydrogel by crystallization. Biomaterials. 2001;22:1891–8.

    Article  CAS  Google Scholar 

  34. Zhang Y, Chu CC. Thermal and mechanical properties of biodegradable hydrophilic-hydrophobic hydrogels based on dextran and poly(lactic acid). J Mater Sci-Mater M. 2002;13:773–81.

    Article  CAS  Google Scholar 

  35. El-Subbagh HI, Al-Badr AA. Praziquantel. Anal. Prof Drug Subst and Exc. 1998;25:464–500.

    Google Scholar 

  36. Torre P, Torrado S, Torrado S. Preparation, dissolution and characterization of Praziquantel solid dispersion. Chem Pharm Bull. 1999;47:1629–33.

    Article  Google Scholar 

  37. Liu Y, Wang X, Wang JK, Ching CB. Structural characterization and enantioseparation of the chiral compound praziquantel. J Pharm Sci. 2004;39:3039–46.

    Article  CAS  Google Scholar 

  38. Mainardes RM, Gremião MPD, Evangelista RC. Thermoanalytical study of praziquantel loaded-PLGA nanoparticles. Rev Bras Ciênc Farm. 2006;42:523–30.

    Article  CAS  Google Scholar 

  39. Yuan W, Geng Y, Wu F, Liu Y, Guo M, Zhao H, Jin T. Preparation of polysaccharides glassy microparticles with stabilization of proteins. Int J Pharm. 2009;366:154–9.

    Article  CAS  Google Scholar 

  40. Cheng L, Lei L, Guo S. In vitro and in vivo evaluation of praziquantel loaded implants based on PEG/PCL blends. Int J Pharm. 2010;387:129–38.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the LMA-IQ/UNESP from Araraquara for the FEG-SEM facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flávio dos Santos Campos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campos, F.d., Ferrari, L.Z., Cassimiro, D.L. et al. Effect of 70-kDa and 148-kDa dextran hydrogels on praziquantel solubility. J Therm Anal Calorim 123, 2157–2164 (2016). https://doi.org/10.1007/s10973-015-4826-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4826-3

Keywords

Navigation