Abstract
The temperature dependence of heat capacity of Bi4Ti3O12 has been measured for the first time in the range from 7 to 346 K by precision adiabatic vacuum calorimetry. The experimental data were used to calculate standard thermodynamic functions, namely the heat capacity, enthalpy H o(T) − H o(0), entropy S o(T) − S o(0), and Gibbs function G o(T) − H o(0), in the range from T → 0 to 346 K. The structure of Bi4Ti3O12 is refined by the Rietveld method (space group Fmmm, Z = 4) at temperatures of 173, 273, 373, 473 K. Thermal deformation model is proposed on the basis of structural data.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Aurivillius B. The structure of Bi2NbO5F and isomorphous compounds. Arkiv foer Kemi. 1952;4:39–47.
Aurivillius B. Mixed bismuth oxides with layer lattices. I. The structure type of CaNb2Bi2O9. Arkiv foer. Kemi. 1949;1:463–80.
Aleksandrov KS, Beznosikov BV. Perovskity. Nastoyashchee i budushchee. (Mnogoobrazie prafaz, fazovye prevrashcheniya, vozmozhnosti sinteza novykh soedinenii) (Perovskites: Critical Issues and Future Prospects (Diversity of Parent Phases, Phase Transformations, and the Possibility of the Synthesis of New Compounds)), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2004, p. 231.
Knyazev AV, Krasheninnikova OV, Korokin VZh. High-temperature characterization of some Aurivillius phases. Inorg Mater. 2014;50(2):170–8.
Wang CM, Wang JF, Gai ZG. Enhancement of dielectric and piezoelectric properties of M0.5Bi4.5Ti4O15 (M = Na, K, Li) ceramics by Ce doping. Scripta Mater. 2007;57(9):789–92.
Araujo CAP, Cuchiaro JD, McMillan LD, Scott MC, Scott JF. Fatigue-free ferroelectric capacitors with platinum electrodes. Nature. 1995;374(6523):627–9.
Subbarao EC. A family of ferroelectric bismuth compounds. J Phys Chem Solids. 1962;23(6):665–76.
Rietveld HM. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 1967;22(Part 1):151–2.
Izumi F, Young RA. The rietveld method, Oxford University Press, Oxford, chap. 13, 1993.
Lebedev BV. Application of precise calorimetry in study of polymers and polymerization processes. Thermochim Acta. 1997;297:143–9.
Aurivillius B. Mixed bismuth oxides with layer lattices. II. Structure of Bi4Ti3O12. Arkiv foer Kemi. 1949;1:499–512.
Yakubov TS. On the specific heat of solids that exhibit fractal character. Dokl Acad Sci. 1990;310:145–50.
Tarasov VV. The theory of the heat capacity of chain-layered structures. Zhurnal Fiz Khimii. 1950;24:111–28.
Knyazev AV, Smirnova NN, Mączka M, Knyazeva SS, Letyanina IA. Thermodynamic and spectroscopic properties of spinel with the formula Li4/3Ti5/3O4. Thermochim Acta. 2013;559:40–5.
Chernorukov NG, Smirnova NN, Knyazev AV, Marochkina MN, Bykova TA, Ershova AV. The thermodynamic properties of calcium uranoborate. Russ J Phys Chem. 2006;80(1):37–41.
Karyakin NV, Chernorukov NG, Suleimanov EV, Alimzhanov MI, Trostin VL, Knyazev AV. The thermodynamic properties of uranyl pyrovanadate and uranovanadic acid. Russ J Phys Chem. 2000;74:1226–31.
Knyazev AV, Mączka M, Kuznetsova NYu, Hanuza J, Markin AV. Thermodynamic properties of rubidium niobium tungsten oxide. J Therm Anal Calorim. 2009;98:843–8.
Knyazev AV, Smirnova NN, Mączka M, Hermanowicz K, Knyazeva SS, Letyanina IA, Lelet MI. Thermodynamic and spectroscopic properties of Co7/3Sb2/3O4. J Chem Thermodyn. 2014;74:201–8.
Lebedev BV. Application of precise calorimetry in study of polymers and polymerization processes. Thermochim Acta. 1997;297:143–9.
Cox JD, Wagman DD, Medvedev VA. Codata key values for thermodynamics, New York: Hemisphere Publishing Corp., 1984.
Chase MW Jr. NIST-JANAF themochemical tables, fourth edition. J Phys Chem Ref Data, Monograph. 1998;9:1–1951.
Lazarevic Z, Stojanovic BD, Varela JA. An approach to analyzing synthesis, structure and properties of bismuth titanate ceramics. Sci Sinter. 2005;37:199–216.
Naz S, Durrani SK, Qureshi AH, Hussain MA, Hussain N. Nanosized bismuth titanate (Bi4Ti3O12) system drive through auto-combustion process by using suspension titania (TiO2). J Therm Anal Calorim. 2014;115:587–93.
Acknowledgements
The work was performed with the financial support of the Russian Foundation of Basic Research (Project Number 13-03-00152).
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Knyazev, A.V., Krasheninnikova, O.V., Smirnova, N.N. et al. Thermodynamic properties and X-ray diffraction of Bi4Ti3O12 . J Therm Anal Calorim 122, 747–754 (2015). https://doi.org/10.1007/s10973-015-4776-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10973-015-4776-9