Skip to main content
Log in

Thermogravimetry study of Gd2O3 chlorination

Kinetics and characterization of gadolinium oxychloride

Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The reaction between Gd2O3(s) and Cl2(g) was studied in a high-resolution thermogravimetric system. The reaction product was GdOCl, which was the unique solid phase produced in all the temperature range studied. The GdOCl is subsequently chlorinated producing GdCl3 for temperatures above 1123 K. The system is under chemical control for temperatures below 723 K. It was found that the reaction order with respect to the chorine partial pressure is 0.77 and the activation energy is 132 kJ mol−1 for the temperature range of 623–723 K. The global rate equation was developed. The GdOCl obtained was characterized by X-ray diffraction, scanning electron microscopy and magnetic measurements. The structure of GdOCl was refined with the Rietveld method, and it crystallized in a tetragonal form of REOX possessing the Matlockite-type (PbFCl) structure. The magnetic measurements indicated that the sample is paramagnetic at all the measurement ranges. The parameters of the Curie–Weiss law obtained were as follows: θ = −12.0 K, C = 7.9592 emu K mol−1 and µ eff = 7.98µ B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. Binnemans K, Jones PT, Blanpain B, Gerven TV, Yang Y, Walton A, Buchert MJ. Recycling of rare earths: a critical review. Clean Prod. 2013;51:1–22.

    Article  CAS  Google Scholar 

  2. Podkolzin SG, Stangland EE, Jones ME, Peringer E, Lercher JA. Methyl chloride production from methane over lanthanum-based catalysts. J Am Chem Soc. 2007;129(9):124569–76.

    Article  Google Scholar 

  3. Mao JG. Structures and luminescent properties of lanthanide phosphonates. Coord Chem Rev. 2007;251:1493–520.

  4. Zalas M. Gadolinium-modified titanium oxide materials for photoenergy applications: a review. J Rare Earths. 2014;32(6):487–95.

    Article  CAS  Google Scholar 

  5. Gupta CK, Krishna Murthy N. Extractive metallurgy of rare earths. London: CRC Press; 2004.

    Book  Google Scholar 

  6. Viyayan S, Melnyk AJ, Singh RD, Nuttall K. Rare earths: their mining, processing and growing industrial usage. Min Eng. 1989;41(1):13.

    Google Scholar 

  7. Korshunov BG, Georgievich B. Applications and potential uses of chlorination methods in metallurgy of non-common metals. Metall Rev Min Metall Inst Jpn. 1992;8:1–34.

    CAS  Google Scholar 

  8. Kanari N, Allain E, Joussemet R, Mochón J, Ruiz-Bustinza I, Gaballah I. An overview study of chlorination reactions applied to the primary extraction and recycling of metals and to the synthesis of new reagents. Thermochim Acta. 2009;495:42–50.

    Article  CAS  Google Scholar 

  9. Mochizuki Y, Tsubouchi N, Sugawara K. Selective recovery of rare earth elements from Dy containing NdFeB magnets by chlorination. ACS Sustain Chem Eng. 2013;1(6):655–62.

    Article  CAS  Google Scholar 

  10. Zhu G, Chi R, Shi W, Xu Z. Chlorination kinetics of fluorine-fixed rare earth concentrate. Min Eng. 2003;16(7):671–4.

    Article  CAS  Google Scholar 

  11. Zhang X, He C, Wang L, Li Z, Feng Q. Synthesis, characterization and nonisothermal decomposition kinetics of La2(CO3)·3.4H2O. J Therm Anal Calorim. 2015;119(3):1713–22.

    Article  CAS  Google Scholar 

  12. Logvinenko V, Bakovets V, Trushnikova L. Dehydroxylation kinetics of gadolinium hydroxide. J Therm Anal Calorim. 2014;115(1):517–21.

    Article  CAS  Google Scholar 

  13. Grivel JC. Thermal decomposition of RE(C2H5CO2)3·H2O (RE = Dy, Tb, Gd, Eu and Sm). J Therm Anal Calorim. 2014;115(2):1253–64.

    Article  CAS  Google Scholar 

  14. Yang HC, Cho YH, Eun HC, Kim EH. Kinetic analysis of a thermal dechlorination and oxidation of gadolinium oxychloride. J Therm Anal Calorim. 2007;90(2):379–84.

    Article  CAS  Google Scholar 

  15. Pomiro FJ, Fouga GG, Gaviría JP, Bohé AE. Study of the reaction stages and kinetics of the europium oxide carbochlorination. Metall Mater Trans B. 2015;46B:304–15.

    Article  Google Scholar 

  16. Rambabu U, Balaji T, Annapurna K, Buddhudu S. Fluorescence spectra of Tm3+-doped rare earth oxychloride powder phosphors. Mater Sci Comput. 1996;43:195–8.

    CAS  Google Scholar 

  17. Rambabu U, Rajamohan Reddy K, Annapurna K, Balaji T, Satyanarayana J, Buddhudu S. Fluorescence spectra of Sm3+-doped lanthanide oxychloride powder phosphors. Mater Lett. 1996;27(1-2):59–63.

    Article  CAS  Google Scholar 

  18. HSC 6.12. Chemistry for windows. Finland: Outokumpu Research Oy, Pori; 2007.

    Google Scholar 

  19. Kim SK. The determination of the kinetics of gas–solid reactions by the nonisothermal technique. Ph.D. Thesis, University of Utah; 1981.

  20. Ranz WE, Marshall WR. Evaporation from drops. Parts I and II. Chem Eng Prog. 1952;48(141–6):173–80.

    CAS  Google Scholar 

  21. Pomiro FJ, Fouga GG, Bohé AE. Kinetic study of europium oxide chlorination. Metall Mat Trans B. 2013;44B:1509–19.

    Article  Google Scholar 

  22. Vyazovkin S. Model-free kinetics. J Therm Anal Calorim. 2006;83:45–51.

    Article  CAS  Google Scholar 

  23. Mamleev V, Bourbigot S, Le Bras M, Lefebvre J. Three model-free methods for calculation of activation energy in TG. J Therm Anal Calorim. 2004;78:1009–27.

    Article  CAS  Google Scholar 

  24. Avrami M. Kinetics of phase change. I: general theory. J Chem Phys. 1939;7(12):1103–13.

    Article  CAS  Google Scholar 

  25. Avrami M. Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8(2):212–24.

    Article  CAS  Google Scholar 

  26. Avrami M. Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys. 1941;9(2):177–84.

    Article  CAS  Google Scholar 

  27. Johnson WA, Mehl RF. Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min Metall Eng. 1939;135:416–27.

    Google Scholar 

  28. Kempen ATW, Sommer F, Mittemeijer EJ. Determination and interpretation of isothermal and non-isothermal transformation kinetics; the effective activation energies in terms of nucleation and growth. J Mater Sci. 2002;37(2):1321–32.

    Article  CAS  Google Scholar 

  29. Gaviría JP, Navarro LG, Bohé AE. Chlorination of lanthanum oxide. J Phys Chem A. 2012;116:2062–70.

    Article  Google Scholar 

  30. Bosco MV, Fouga GG, Bohé AE. Kinetic study of neodymium oxide chlorination with gaseous chlorine. Thermochim Acta. 2012;540:98–106.

    Article  CAS  Google Scholar 

  31. TOPAS. Version 4.2. Germany: Bruker AXS, Karlsruhe; 2008.

  32. Moon RM, Koehler WC. Magnetic properties of Gd2O3. Phys Rev B. 1975;11(4):1609–22.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Comahue and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) for the financial support of this work and the Laboratorio de Resonancias Magnéticas of Centro Atómico Bariloche for the magnetic measurements and the information provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico J. Pomiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pomiro, F.J., Fouga, G.G., Gaviría, J.P. et al. Thermogravimetry study of Gd2O3 chlorination. J Therm Anal Calorim 122, 679–687 (2015). https://doi.org/10.1007/s10973-015-4738-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4738-2

Keywords

Navigation