Skip to main content
Log in

The applicability of isoconversional models in estimating the kinetic parameters of biomass pyrolysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The objective of this study was to discuss the applicability of isoconversional models in estimating the activation energy and pre-exponential factor for biomass pyrolysis. Thermogravimetry and derivative thermogravimetry experiments of tucumã endocarp were performed at the heating rates of 5, 10, and 20 °C min−1 in an atmosphere of nitrogen. The isoconversional models of Ozawa–Flynn–Wall, modified Coats–Redfern, Friedman, and Vyazovkin were applied to the experimental data, considering first-order rate law, resulting in activation energies of 147.25, 144.64, 160.47, and 144.96 kJ mol−1, respectively. The pre-exponential factor varied from 9.75 to 11.95 log s−1. As isoconversional models consider the solid decomposition to be represented by a single reaction, described by only one peak in the derivative thermogravimetry data, only a satisfactory agreement between experimental and theoretical data was observed. The fit was verified by simulating curves of conversion as a function of temperature, in which the kinetic parameters obtained with Ozawa–Flynn–Wall and Vyazovkin models generated the lowest relative deviations (9.05 and 9.3 %, respectively). In consequence, the use of isoconversional models is attractive because this kind of model is easy to apply, generating satisfactory approximations for the actual kinetic parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Lora ES, Andrade RV. Biomass as energy source in Brazil. Renew Sustain Energy Rev. 2009;13:777–88.

    Article  CAS  Google Scholar 

  2. Van de Velden M, Baeyens J, Brems A, Janssens B, Dewil R. Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renew Energy. 2010;35:232–42.

    Article  Google Scholar 

  3. Basu P. Biomass gasification and pyrolysis—practical design. Oxford: Academic Press; 2010. p. 23–92.

    Google Scholar 

  4. Anca-Couce A, Berger A, Zobel N. How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme. Fuel. 2014;123:230–40.

    Article  CAS  Google Scholar 

  5. Cardoso CR, Miranda MR, Santos KG, Ataíde CH. Determination of kinetic parameters and analytical pyrolysis of tobacco waste and sorghum bagasse. J Anal Appl Pyrolysis. 2011;92:392–400.

    Article  CAS  Google Scholar 

  6. Mohan D, Pittman CU, Steele PH. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels. 2006;20:848–89.

    Article  CAS  Google Scholar 

  7. White JE, Catallo WJ, Legendre BL. Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrolysis. 2011;91:1–33.

    Article  CAS  Google Scholar 

  8. Gómez MF, Silveira S. Rural electrification of the Brazilian Amazon—achievements and lessons. Energy Policy. 2010;38:6251–60.

    Article  Google Scholar 

  9. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  10. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand. 1934;1966(70):487–523.

    Google Scholar 

  11. Braun RL, Burnham AK, Reynolds JG, Clarkson JE. Pyrolysis kinetics for lacustrine and marine source rocks by programmed micropyrolysis. Energy Fuels. 1991;5:192–204.

    Article  CAS  Google Scholar 

  12. Ceylan S, Topçu Y. Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis. Bioresour Technol. 2014;156C:182–8.

    Article  Google Scholar 

  13. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C Polym Symp. 1964;6:183–95.

    Article  Google Scholar 

  14. Nascimento VF. Caracterização de biomassas amazônicas—ouriço de castanha-do-brasil, ouriço de sapucaia e caroço do fruto do tucumã—visando sua utilização em processos de termoconversão. Master’s Dissertation, University of Campinas. 2012, p. 148.

  15. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;707:1881–6.

    Article  Google Scholar 

  16. Cai J, Wu W, Liu R, Huber GW. A distributed activation energy model for the pyrolysis of lignocellulosic biomass. Green Chem. 2013;15:1331.

    Article  CAS  Google Scholar 

  17. ASTM—American Society for Testing and Materials Standard D240. Standard test method for heat of combustion of liquid hydrocarbon fuels by bomb calorimeter. West Conshohocken: ASTM International; 2009. doi:10.1520/D0240-09.

    Google Scholar 

  18. Tannous K, Silva FS. Particles and geometric shapes analyzer APOGEO. In: Khosrow-Pour M, editor. Encyclopedia of information science and technology. 3rd ed. doi:10.4018/978-1-4666-5888-2.ch349.

  19. ASTM Standard Standard E1755, 2001. Standard test method for ash in biomass. West Conshohocken: ASTM International; 2007. doi:10.1520/E1755-01R07.

    Google Scholar 

  20. ASTM Standard E871, 1982. Standard test method for moisture analysis of particulate wood fuels. West Conshohocken: ASTM International; 2006. doi:10.1520/E0871-82R06.

    Google Scholar 

  21. ASTM Standard E872, 1982. Standard test method for volatile matter in the analysis of particulate wood fuels. West Conshohocken: ASTM International; 2006. doi:10.1520/E0872-82R06.

    Google Scholar 

  22. Sánchez C. Caracterização das biomassas. In: SÁNCHEZ C (Org.). Tecnologia da gaseificação de biomassa. Campinas, Sao Paulo, Brazil: Editora Átomo, pp. 200–209, 2010.

  23. Mendeleev DI. Compositions (collection of works). Reports from the Science Academy of Union of Soviet Socialist Republics: Moscow, vol. 15, p. 115–118, 1949.

  24. Vyazovkin S, Wight CA. Isothermal and nonisothermal reaction kinetics in solids: in search of ways toward consensus. J Phys Chem. 1997;5639:8279–84.

    Article  Google Scholar 

  25. Senum GI, Yang RT. Rational approximations of the integral of Arrhenius function. J Therm Anal. 1977;11:445–7.

    Article  Google Scholar 

  26. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data II. J Polym Sci Part B Polym Lett. 1965;3:917–20.

    Article  CAS  Google Scholar 

  27. Órfão JJM, Antunes FJA, Figueiredo JL. Pyrolysis kinetics of lignocellulosic materials—three independent reactions model. Fuel. 1999;78:349–58.

    Article  Google Scholar 

  28. Raveendran K, Ganesh A, Khilar KC. Pyrolysis characteristics of biomass and biomass components. Fuel. 1996;75:987–98.

    Article  CAS  Google Scholar 

  29. Di Blasi C. Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energy Combust Sci. 2008;34:47–90.

    Article  Google Scholar 

  30. Shen J, Wang XS, Garcia-Perez M, Mourant D, Rhodes MJ, Li CZ. Effects of particle size on the fast pyrolysis of oil mallee woody biomass. Fuel. 2009;88:1810–7.

    Article  CAS  Google Scholar 

  31. Biagini E, Fantei A, Tognotti L. Effect of the heating rate on the devolatilization of biomass residues. Thermochim Acta. 2008;472:55–63.

    Article  CAS  Google Scholar 

  32. Mishra G, Bhaskar T. Non isothermal model free kinetics for pyrolysis of rice straw. Bioresour Technol. 2014;169:614–21.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the financial support received from the Coordination for the Improvement of Higher Education Personnel (CAPES), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Érico de Godois Baroni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baroni, É.G., Tannous, K., Rueda-Ordóñez, Y.J. et al. The applicability of isoconversional models in estimating the kinetic parameters of biomass pyrolysis. J Therm Anal Calorim 123, 909–917 (2016). https://doi.org/10.1007/s10973-015-4707-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4707-9

Keywords

Navigation