Journal of Thermal Analysis and Calorimetry

, Volume 122, Issue 1, pp 157–166 | Cite as

Effect of the addition of pore former

Graphite and ammonium bicarbonate on the properties of Ni/Al2O3–3YSZ composite materials
  • Ewa Drożdż
  • Małgorzata Stachura
  • Jan Wyrwa
  • Mieczysław Rękas
Article

Abstract

Tetragonal zirconia (3YSZ) and cermet nickel–tetragonal zirconia (Ni/3YSZ) were obtained by citric method. The porosity of samples was increased by addition of two kind of pore-forming agents: graphite and ammonium bicarbonate. The different influence of this pore former on microstructure of cermet materials was found on the basis of density, total porosity and open porosity measurements and SEM/EDX analysis. TG/DTA/EGA analysis shows that thermal behaviour of pores agent directly affects microstructure properties of material. The analysis of porosity reveals that after sintering at 1200 °C in the case of samples without nickel, addition of both graphite and ammonium bicarbonate allows one to obtain above 30 vol% of open porosity. In the case of nickel cermet, only addition of 40 vol% of NH4HCO3 to the sample retains required open porosity. The results of electrical measurements show that changes of samples microstructure cause by adding of pore former do not affect significantly the conductivity of nickel–cermet samples. Ammonium bicarbonate is found to be a proper pore former for increasing porosity of anode materials for SOFC.

Keywords

Pore formers Composite materials Cermet materials Nanoparticles SOFC anode 

Notes

Acknowledgements

The financial support of the NCN, Grant DEC-2012/05/B/ST8/02723 is gratefully acknowledged.

References

  1. 1.
    Okubo T, Takahashi T, Sadakata M, Nagamoto H. Crack-free porous YSZ membrane via controlled synthesis of zirconia sol. J Membr Sci. 1996;118(2):151–7.CrossRefGoogle Scholar
  2. 2.
    H. Nagamoto, H. Ikewaki. Preparation of YSZ thin film on porous electrode of SOFC. In: MRS proceedings 1998; vol 547, p. 333. doi:10.1557/PROC-547-333.
  3. 3.
    Marinsek M, Zupan K. Microstructure evaluation of sintered combustion-derived fine powder NiO–YSZ. Ceram Int. 2010;36:1075–82.CrossRefGoogle Scholar
  4. 4.
    Drożdż-Cieśla E, Wyrwa J, Rękas M. Properties of Ni/YSZ cermet materials with addition of Al2O3. J Therm Anal Calorim. 2013;123:425–30.Google Scholar
  5. 5.
    Talebi T, Sarrafi MH, Haji M, Raissi B, Maghsoudipour A. investigation on microstructures of NiO–YSZ composite and Ni–YSZ cermet for SOFCs. Int J Hydrog Energy. 2010;35:9440–7.CrossRefGoogle Scholar
  6. 6.
    Hasanuzzaman M, Rafferty A, Olabi AG, Prescott T. Prescott, Sintering and characterization of nano-sized yttria-stabilized zirconia. Int J Nanopart. 2008;1(1):50–65.CrossRefGoogle Scholar
  7. 7.
    Surzhikov AP, Frangulyan TS, Ghyngazov SA. A thermoanalysis of phase transformations and linear shrinkage kinetics of ceramics made from ultrafine plasmochemical ZrO2(Y)–Al2O3 powders. J Therm Anal Calorim. 2014;115:1439–45.CrossRefGoogle Scholar
  8. 8.
    Clemmer RMC, Corbin SF. The influence of pore and Ni morphology on the electrical morphology of porous Ni/YSZ composite anodes for use in solid oxide fuel cells. Solid State Ion. 2009;180:721–30.CrossRefGoogle Scholar
  9. 9.
    Sanson A, Pinasco P, Roncari E. Influence of pore formers on slurry composition and microstructure of tape cast supporting anodes for SOFCs. J Eur Ceram Soc. 2008;28:1221–6.CrossRefGoogle Scholar
  10. 10.
    Clemmer RMC, Corbin SF. Effect of graphite pore-forming agents on the sintering characteristics of Ni/YSZ composites for solid oxide fuel cell applications. Int J Appl Ceram Technol. 2012;9(6):1022–34.CrossRefGoogle Scholar
  11. 11.
    Horri BA, Selomulya C, Wang H. Electrochemical characteristics and performance of anode-supported SOFCs fabricated using carbon microspheres as a pore-former. Int J Hydrog Energy. 2012;37:15311–9.CrossRefGoogle Scholar
  12. 12.
    Heshmatpour F, Aghakhanpour RB. Synthesis and characterization of nanocrystalline zirconia powder by simple sol–gel method with glucose and fructose as organic additives. Powder Technol. 2011;205(1–3):193–200.CrossRefGoogle Scholar
  13. 13.
    Rudenko N, Laptev A. Compaction and properties of highly porous powder parts produced with various pore formers. Mech Test Diagn. 2011;1(I):82–7.Google Scholar
  14. 14.
    Le M, Ye JW, Zhang LF, Li J, Tu MJ. Process and compressive properties of porous nickel materials. Powder Metall. 2006;49(2):114–7.CrossRefGoogle Scholar
  15. 15.
    Poon M, Kesler O. The influence of pore formers on the microstructure of plasma-sprayed NiO–YSZ anodes. J Power Sources. 2012;210:204–17.CrossRefGoogle Scholar
  16. 16.
    Drozdż E. The influence of the method of addition of Al2O3 to 3YSZ material on its thermal and electrical properties. J Therm Anal Calorim. 2014;118:1345–53.CrossRefGoogle Scholar
  17. 17.
    Guo X, Siegle W, Fleig J, Maier J. Role of space charge in the grain boundary blocking effect in doped zirconia. Solid State Ion. 2002;154–155:555–61.CrossRefGoogle Scholar
  18. 18.
    Xue Q. A percolation model of metal–insulator composites. Phys B. 2003;325:195.CrossRefGoogle Scholar
  19. 19.
    Zhao J, He X, Wang L, Tian J, Wan Ch, Jiang Ch. Addition ofNH4HCO3 as pore-former in membrane electrode assemblyfor PEMFC. Int J Hydrog Energy. 2007;32:380–4.CrossRefGoogle Scholar
  20. 20.
    Meng Z, Yang D, Yan Y. Study of carbon black oxidation behavior under different heating rates. J Therm Anal Calorim. 2014;118:551–9.CrossRefGoogle Scholar
  21. 21.
    Meriste T, Yörük CR, Trikkel A, Kaljuvee T, Kuusik R. TG-FTIR analysis of oxidation kinetics of some solid fuels under oxy-fuel conditions. J Therm Anal Calorim. 2013;114:483–9.CrossRefGoogle Scholar
  22. 22.
    Guo Wei-Ming, Xiao Han-Ning, Zhang Guo-Jun. Kinetics and mechanisms of non-isothermal oxidation of graphite in air. Corros Sci. 2008;50:2007–11.CrossRefGoogle Scholar
  23. 23.
    Sato K, Abe H, Misono T, Murata K, Fukui T, Nito M. Enhanced electrochemical activity and long-term stability of Ni–YSZ anode derived from NiO–YSZ interdispersed composite particles. J Eur Ceram Soc. 2009;29:1119.CrossRefGoogle Scholar
  24. 24.
    Xiaowei L, Jean-Charles R, Suyuan Y. Effect of temperature on graphite oxidation behavior. Nucl Eng Des. 2004;227(3):273–80.CrossRefGoogle Scholar
  25. 25.
    Yin Y, Binner JGP, Cross TE, Marshall SJ. The oxidation behaviour of carbon fibres. J Mater Sci. 1994;29:2250–4.CrossRefGoogle Scholar
  26. 26.
    Tanaka J, Baumard JF, Abelard P. Nonlinear electrical properties of grain boundaries in an oxygen-ion conductor (CeO2 × Y2O3). J Am Ceram Soc. 1987;70:637–43.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • Ewa Drożdż
    • 1
  • Małgorzata Stachura
    • 1
  • Jan Wyrwa
    • 1
  • Mieczysław Rękas
    • 1
  1. 1.Faculty of Materials Science and CeramicsAGH University of Science and TechnologyKrakówPoland

Personalised recommendations