Abstract
Pyrolysis is a fundamental step in thermochemical processes of biomass materials, so a suitable kinetic model is an essential tool to predict the evolution of the resulting products of reaction. However, many difficulties arise in modeling this process step due to the very high number of the involved reactions. In this work, a new double-Gaussian distributed activation energy model was applied in fitting the experimental data of olive residue pyrolysis obtained by thermogravimetric analysis. 2-DAEM formulation considers two sets of parallel reactions occurring and sharing the same pre-exponential factor, but shows different distributions of the activation energy, described by two separate Gaussian distributions that, in turn, grasp the two pyrolysis steps with a high accuracy. Since it is well known that in fitting all the kinetic parameters the pre-exponential factor results highly correlated with the activation energy, the former parameter was separately estimated as a linear combination of the values obtained for the three main biomass components, cellulose, hemicellulose and lignin.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Abbreviations
- DAEM:
-
Distributed activation energy model
- EF:
-
Extractive free
- TG:
-
Thermogravimetry
- DTG:
-
Derivative thermogravimetry
- E :
-
Activation energy (kJ mol−1)
- E 0 :
-
Mean activation energy (kJ mol−1)
- f(E):
-
Distribution function of activation energy (mol J−1)
- k 0 :
-
Frequency factor (s−1)
- k :
-
Kinetic constant (mol s−1)
- T :
-
Absolute temperature (K)
- R :
-
Universal gas constant (8.314 J mol−1 K−1)
- t :
-
Time of conversion (s)
- m 0 :
-
The initial mass (mass%)
- m f :
-
The final residual mass (mass%)
- m t :
-
The mass of the sample at time t (mass%)
- N :
-
Number of data points
- x :
-
Mass fraction of released volatiles
- X :
-
SSR, sum of square residuals
- y s :
-
Experimental data in fitting function
- y(T):
-
Calculated data in fitting function
- V :
-
Accumulated volatiles produced
- V * :
-
Final accumulated volatiles produced
- w :
-
Mass of primary/secondary pyrolysis
- α :
-
Heating rate (K min−1)
- σ E :
-
Standard deviation
- 1:
-
First Gaussian in 2-DAEM
- 2:
-
Second Gaussian in 2-DAEM
- i :
-
ith component
- j :
-
jth experimental data to fitting
References
Mohan D, Pittman CU, Steele PH. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels. 2006;20(3):848–89. doi:10.1021/ef0502397.
Kader MA, Islam MR, Parveen M, Haniu H, Takai K. Pyrolysis decomposition of tamarind seed for alternative fuel. Bioresour Technol. 2013;149:1–7. doi:10.1016/j.biortech.2013.09.032.
Ion I, Popescu F, Rolea G. A biomass pyrolysis model for CFD application. J Therm Anal Calorim. 2013;111(3):1811–5. doi:10.1007/s10973-012-2552-7.
Cai J, Liu R. New distributed activation energy model: numerical solution and application to pyrolysis kinetics of some types of biomass. Bioresour Technol. 2008;99(8):2795–9. doi:10.1016/j.biortech.2007.06.033.
Bates RB, Ghoniem AF. Biomass torrefaction: modeling of volatile and solid product evolution kinetics. Bioresour Technol. 2012;124:460–9. doi:10.1016/j.biortech.2012.07.018.
Pitt G. The kinetics of the evolution of volatile products from coal. Fuel. 1962;41(3):267–74.
Ma F, Zeng Y, Wang J, Yang Y, Yang X, Zhang X. Thermogravimetric study and kinetic analysis of fungal pretreated corn stover using the distributed activation energy model. Bioresour Technol. 2013;128:417–22. doi:10.1016/j.biortech.2012.10.144.
Li Z, Liu C, Chen Z, Qian J, Zhao W, Zhu Q. Analysis of coals and biomass pyrolysis using the distributed activation energy model. Bioresour Technol. 2009;100(2):948–52. doi:10.1016/j.biortech.2008.07.032.
Trninić M, Wang L, Várhegyi G, Grønli M, Skreiberg Ø. Kinetics of corncob pyrolysis. Energy Fuels. 2012;26(4):2005–13. doi:10.1021/ef3002668.
Li C, Suzuki K. Kinetic analyses of biomass tar pyrolysis using the distributed activation energy model by TG/DTA technique. J Therm Anal Calorim. 2009;98(1):261–6. doi:10.1007/s10973-009-0151-z.
Li L, Wang G, Wang S, Qin S. Thermogravimetric and kinetic analysis of energy crop Jerusalem artichoke using the distributed activation energy model. J Therm Anal Calorim. 2013;114(3):1183–9. doi:10.1007/s10973-013-3115-2.
Cheng Z, Wu W, Ji P, Zhou X, Liu R, Cai J. Applicability of Fraser–Suzuki function in kinetic analysis of DAEM processes and lignocellulosic biomass pyrolysis processes. J Therm Anal Calorim. 2015;119(2):1429–38.
Zhu X, Chen Z, Xiao B, Hu Z, Hu M, Liu C, et al. Co-pyrolysis behaviors and kinetics of sewage sludge and pine sawdust blends under non-isothermal conditions. J Therm Anal Calorim. 2014;. doi:10.1007/s10973-014-4321-2.
Albis A, Ortiz E, Suárez A, Piñeres I. TG/MS study of the thermal devolatilization of Copoazú peels (Theobroma grandiflorum). J Therm Anal Calorim. 2014;115(1):275–83. doi:10.1007/s10973-013-3227-8.
Wu W, Mei Y, Zhang L, Liu R, Cai J. Effective activation energies of lignocellulosic biomass pyrolysis. Energy Fuels. 2014;28(6):3916–23.
Soria-Verdugo A, Garcia-Gutierrez LM, Blanco-Cano L, Garcia-Hernando N, Ruiz-Rivas U. Evaluating the accuracy of the distributed activation energy model for biomass devolatilization curves obtained at high heating rates. Energy Convers Manag. 2014;86:1045–9.
Anthony DB, Howard JB. Coal devolatilization and hydrogastification. AIChE J. 1976;22(4):625–56. doi:10.1002/aic.690220403.
Cai JM, Liu RH. Parametric study of the nonisothermal n th-order distributed activation energy model involved the Weibull distribution for biomass pyrolysis. J Therm Anal Calorim. 2007;89(3):971–5. doi:10.1007/s10973-006-8266-y.
Boudreau BP, Ruddick BR. On a reactive continuum representation of organic matter diagenesis. Am J Sci. 1991;291(5):507–38.
Burnham AK, Braun RL. Global kinetic analysis of complex materials. Energy Fuels. 1998;13(1):1–22. doi:10.1021/ef9800765.
Lakshmanan CC, Bennett ML, White N. Implications of multiplicity in kinetic parameters to petroleum exploration. Distributed activation energy models. Energy Fuels. 1991;5(1):110–7.
Holstein A, Bassilakis R, Wójtowicz MA, Serio MA. Kinetics of methane and tar evolution during coal pyrolysis. Proc Combust Inst. 2005;30(2):2177–85. doi:10.1016/j.proci.2004.08.231.
Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D. Determination of extractives in biomass. Laboratory Analytical Procedure (LAP), NREL/TP-510-42619. National Renewable Laboratory, Golden, CO. 2005.
Cai J, Wu W, Liu R. Sensitivity analysis of three-parallel-DAEM-reaction model for describing rice straw pyrolysis. Bioresour Technol. 2013;132:423–6. doi:10.1016/j.biortech.2012.12.073.
Sarvaramini A, Assima GP, Larachi F. Dry torrefaction of biomass: torrefied products and torrefaction kinetics using the distributed activation energy model. Chem Eng J. 2013;229:498–507.
Liu Q, Zhong Z, Wang S, Luo Z. Interactions of biomass components during pyrolysis: a TG-FTIR study. J Anal Appl Pyrolysis. 2011;90(2):213–8. doi:10.1016/j.jaap.2010.12.009.
De Caprariis B, De Filippis P, Herce C, Verdone N. Double-gaussian distributed activation energy model for coal devolatilization. Energy Fuels. 2012;26(10):6153–9.
Várhegyi G, Chen H, Godoy S. Thermal decomposition of wheat, oat, barley, and Brassica carinata straws: a kinetic study. Energy Fuels. 2009;23(2):646–52. doi:10.1021/ef800868k.
Zhang J, Chen T, Wu J, Wu J. Multi-Gaussian-DAEM-reaction model for thermal decompositions of cellulose, hemicellulose and lignin: comparison of N2 and CO2 atmosphere. Bioresour Technol. 2014;166:87–95. doi:10.1016/j.biortech.2014.05.030.
Várhegyi G, Bobály B, Jakab E, Chen H. Thermogravimetric study of biomass pyrolysis kinetics. a distributed activation energy model with prediction tests. Energy Fuels. 2010;25(1):24–32. doi:10.1021/ef101079r.
Brun R, Rademakers F. ROOT: an object oriented data analysis framework. Nucl Instrum Methods Phys Res Sect A. 1997;389(1–2):81–6.
Di Blasi C, Signorelli G, Di Russo C, Rea G. Product distribution from pyrolysis of wood and agricultural residues. Ind Eng Chem Res. 1999;38(6):2216–24. doi:10.1021/ie980711u.
Uzun BB, Pütün AE, Pütün E. Composition of products obtained via fast pyrolysis of olive-oil residue: effect of pyrolysis temperature. J Anal Appl Pyrolysis. 2007;79(1–2):147–53. doi:10.1016/j.jaap.2006.12.005.
Brown ME, Galwey AK. The significance of “compensation effects” appearing in data published in “computational aspects of kinetic analysis”: ICTAC project, 2000. Thermochim Acta. 2002;387(2):173–83.
Strezov V, Lucas JA, Evans TJ, Strezov L. Effect of heating rate on the thermal properties and devolatilisation of coal. J Therm Anal Calorim. 2004;78(2):385–97.
Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19.
Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86(12–13):1781–8. doi:10.1016/j.fuel.2006.12.013.
Granada E, Eguía P, Comesaña JA, Patiño D, Porteiro J, Miguez JL. Devolatilization behaviour and pyrolysis kinetic modelling of Spanish biomass fuels. J Therm Anal Calorim. 2013;113(2):569–78. doi:10.1007/s10973-012-2747-y.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
de Caprariis, B., Santarelli, M.L., Scarsella, M. et al. Kinetic analysis of biomass pyrolysis using a double distributed activation energy model. J Therm Anal Calorim 121, 1403–1410 (2015). https://doi.org/10.1007/s10973-015-4665-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10973-015-4665-2