Skip to main content

Comparative study on synergistic effect of LDH and zirconium phosphate with aluminum trihydroxide on flame retardancy of EVA composites

Abstract

Flame-retardant ethylene vinyl acetate (EVA) composite based on aluminum trihydroxide (ATH), layered double hydroxide (LDH) and organo-modified zirconium phosphate (mZrP) were prepared by melt-compounding method. The synergistic effect of LDH and mZrP with ATH on the fire behavior and thermal stability of EVA composites was studied by limiting oxygen index, UL-94 test, cone calorimeter and thermogravimetric analysis. EVA composite with ATH and LDH passed the V-0 rating while EVA composite with ATH and mZrP exhibited relatively low peak heat release rate. EVA/ATH composite with 10 mass% LDH exhibited a char yield of 34 % at 700 °C, while its counterpart with 10 mass% mZrP showed 29 %, indicating LDH possessed superior flame-retardant synergistic efficiency with ATH over mZrP in terms of promoting char formation. Regarding the heat release rate (HRR), EVA/ATH composite with 10 mass% mZrP displayed a 73 % reduction in PHRR, whereas its counterpart with the equivalent loading of LDH showed a lower flame-retardant synergistic efficiency (a 58 % reduction in peak HRR). The results above demonstrated that LDH mainly functioned as catalyst in char formation, while mZrP was beneficial to restraining heat release.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Li L, Qian Y, Jiao CM. Synergistic flame retardant effect of melamine in ethylene–vinyl acetate/layered double hydroxides composites. J Therm Anal Calorim. 2013;114:45–55.

    Article  Google Scholar 

  2. Beyer G. Flame retardant properties of EVA-nanocomposites and improvements by combination of nanofillers with aluminium trihydrate. Fire Mater. 2001;25:193–7.

    Article  CAS  Google Scholar 

  3. Nistor MT, Vasile C. Influence of the nanoparticle type on the thermal decomposition of the green starch/poly(vinyl alcohol)/montmorillonite nanocomposites. J Therm Anal Calorim. 2013;111:1903–19.

    Article  CAS  Google Scholar 

  4. Yin HQ, Yuan DD, Cai XF. Red phosphorus acts as second acid source to form a novel intumescent-contractive flame-retardant system on ABS. J Therm Anal Calorim. 2013;111:499–506.

    Article  CAS  Google Scholar 

  5. Wang X, Hu Y, Song L, Xing WY, Lu HD, Lv P, Jie GX. Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer. Polymer. 2010;51:2435–45.

    Article  CAS  Google Scholar 

  6. Sener AA, Demirhan E. The investigation of using magnesium hydroxide as a flame retardant in the cable insulation material by cross-linked polyethylene. Mater Des. 2008;29:1376–9.

    Article  CAS  Google Scholar 

  7. Bahattab MA, Mosnacek J, Basfar AA, Shukri TM. Cross-linked poly (ethylene vinyl acetate)(EVA)/low density polyethylene (LDPE)/metal hydroxides composites for wire and cable applications. Polym Bull. 2010;64:569–80.

    Article  CAS  Google Scholar 

  8. Rybiński P, Janowska G. Effect of halogenless flame retardants on the thermal properties, flammability, and fire hazard of cross-linked EVM/NBR rubber blends. J Therm Anal Calorim. 2014;115:771–82.

    Article  Google Scholar 

  9. Rychly J, Vesely K, Gal E, Kummer M, Jancar J, Rychla L. Use of thermal methods in the characterization of the high-temperature decomposition and ignition of polyolefins and EVA copolymers filled with Mg(OH)2, Al(OH)3 and CaCO3. Polym Degrad Stab. 1990;30:57–72.

    Article  CAS  Google Scholar 

  10. LeBaron PC, Wang Z, Pinnavaia TJ. Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci. 1999;15:11–29.

    Article  CAS  Google Scholar 

  11. Porter D, Metcalfe E, Thomas M. Nanocomposite fire retardants—a review. Fire Mater. 2000;24:45–52.

    Article  CAS  Google Scholar 

  12. Hull TR, Price D, Liu Y, Wills CL, Brady J. An investigation into the decomposition and burning behaviour of ethylene-vinyl acetate copolymer nanocomposite materials. Polym Degrad Stab. 2003;82:365–71.

    Article  CAS  Google Scholar 

  13. Peeterbroeck S, Alexandre M, Nagy J, Pirlot C, Fonseca A, Moreau N, Philippin G, Delhalle J, Mekhalif Z, Sporken R. Polymer-layered silicate–carbon nanotube nanocomposites: unique nanofiller synergistic effect. Compos Sci Technol. 2004;64:2317–23.

    Article  CAS  Google Scholar 

  14. Gao F, Beyer G, Yuan Q. A mechanistic study of fire retardancy of carbon nanotube/ethylene vinyl acetate copolymers and their clay composites. Polym Degrad Stab. 2005;89:559–64.

    Article  CAS  Google Scholar 

  15. Allen NS, Edge M, Rodriguez M, Liauw CM, Fontan E. Aspects of the thermal oxidation of ethylene vinyl acetate copolymer. Polym Degrad Stab. 2000;68:363–71.

    Article  CAS  Google Scholar 

  16. Marcilla A, Gomez-Siurana A, Menargues S. Oxidative degradation of EVA copolymers in the presence of catalysts. J Therm Anal Calorim. 2007;87:519–27.

    Article  CAS  Google Scholar 

  17. Wang DY, Leuteritz A, Wang YZ, Wagenknecht U, Heinrich G. Preparation and burning behaviors of flame retarding biodegradable poly(lactic acid) nanocomposite based on zinc aluminum layered double hydroxide. Polym Degrad Stab. 2010;95:2474–80.

    Article  CAS  Google Scholar 

  18. Wang DY, Song YP, Lin L, Wang XL, Wang YZ. A novel phosphorus-containing poly(lactic acid) toward its flame retardation. Polymer. 2011;52:233–8.

    Article  CAS  Google Scholar 

  19. Wang X, Hu Y, Song L, Xing WY, Lu HD. Thermal degradation behaviors of epoxy resin/POSS hybrids and phosphorus–silicon synergism of flame retardancy. J Polym Sci Polym Phys. 2010;48:693–705.

    Article  CAS  Google Scholar 

  20. Wang X, Song L, Yang HY, Xing WY, Kandola B, Hu Y. Simultaneous reduction and surface functionalization of graphene oxide with POSS for reducing fire hazards in epoxy composites. J Mater Chem. 2012;22:22037–43.

    Article  CAS  Google Scholar 

  21. Zhang WC, Li XM, Yang RJ. Blowing-out effect and temperature profile in condensed phase in flame retarding epoxy resins by phosphorus-containing oligomeric silsesquioxane. Polym Adv Technol. 2013;24:951–61.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is partly funded by the European Commission under the 7th Framework Programme (Marie Curie Career Integration Grant), European Project COST Action MP1105 “FLARETEX”, and Ramón y Cajal Grant (RYC-2012-10737).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Yi Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kalali, E.N., De Juan, S., Wang, X. et al. Comparative study on synergistic effect of LDH and zirconium phosphate with aluminum trihydroxide on flame retardancy of EVA composites. J Therm Anal Calorim 121, 619–626 (2015). https://doi.org/10.1007/s10973-015-4598-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4598-9

Keywords

  • Flame retardancy
  • Ethylene vinyl acetate (EVA)
  • Synergistic effect
  • Halogen free