Skip to main content
Log in

Thermoanalytical study of precursors for tin sulfide thin films deposited by chemical spray pyrolysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal decomposition of precursors for SnS thin films obtained by drying aqueous solutions of SnCl2 and SC(NH2)2 in the Sn:S molar ratios of 1:1 (1) and 1:8 (2) was monitored by simultaneous thermogravimetry/differential thermal analysis (TG/DTA) measurements in the dynamic 80 % Ar + 20 % O2 atmosphere. The evolved gaseous species from 1 were recorded by simultaneous thermogravimetry/differential thermal analysis/evolved gas analysis–mass spectrometry (TG/DTA/EGA-MS) measurements. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to characterize the dried precursors and products of the thermal decomposition. The precursor 1 is a complex compound, Sn(tu)Cl2, while 2 consists of Sn2(tu)5Cl4·H2O and noncomplexed thiourea. The thermal degradation of 1 and 2 in the temperature range of 30–700 °C consists of four steps with a total mass loss of 68.0 and 84.5 %, respectively. According to XRD, the solid decomposition products at 210 °C of 1 are SnS2, (NH4)2SnCl6 and C(NH2)3SnCl3, and of 2 are SnS2, SnS, NH4Cl and (NH4)2SnCl6. Decomposition of 1 and 2 is completed by 550 and 570 °C, respectively. The final decomposition product of 1 and 2 at 700 °C is SnO2. This study shows that the excess of thiourea in the spray solution, compared to that required for the formation of the intermediate tin complex compounds, suppresses the formation of tin oxide phase and depresses the loss of tin species from the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sinsermsuksakul P, Hartman K, Kim SB, Heo J, Sun L, Park HH, Chakraborty R, Buonassisi T, Gordon RG. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxysulfide buffer layer. Appl Phys Lett. 2013;102:053901.

    Article  Google Scholar 

  2. Reddy KTR, Reddy PP, Miles RW, Datta PK. Investigation of SnS films deposited by spray pyrolysis. Opt Mater. 2001;17:295–8.

    Article  Google Scholar 

  3. Jeyaprakash BG, Kumar RA, Kesavan K, Amalarani A. Structural and optical characterization of spray deposited SnS thin film. J Am Sci. 2010;6:22–6.

    Google Scholar 

  4. Krunks M, Kärber E, Katerski A, Otto K, Oja Acik I, Dedova T, Mere A. Extremely thin absorber layer solar cells on zinc oxide nanorods by chemical spray. Sol Energy Mater Sol Cells. 2010;94:1191–5.

    Article  CAS  Google Scholar 

  5. Otto K, Katerski A, Mere A, Volobujeva O, Krunks M. Spray pyrolysis deposition of indium sulphide thin films. Thin Solid Films. 2011;519:3055–60.

    Article  CAS  Google Scholar 

  6. Dedova T, Krunks M, Gromyko I, Mikli V, Sildos I, Utt K, Unt T. Effect of Zn: S molar ratio in solution on the properties of ZnS thin films and the formation of ZnS nanorods by spray pyrolysis. Phys Status Solidi A. 2014;2:514–21.

    Article  Google Scholar 

  7. Sajeesh TH, Warrier AR, Kartha CS, Vijayakumar KP. Optimization of parameters of chemical spray pyrolysis technique to get n and p-type layers of SnS. Thin Solid Films. 2010;518:4370–4.

    Article  CAS  Google Scholar 

  8. Ray SC, Karanjai MK, DasGupta D. Structure and photoconductive properties of dip-deposited SnS and SnS2 thin films and their conversion to tin dioxide by annealing in air. Thin Solid Films. 1999;350:72–8.

    Article  CAS  Google Scholar 

  9. Polivtseva S, Oja Acik I, Katerski A, Mere A, Mikli V, Krunks M. Spray pyrolysis deposition of SnxSy thin films. Energy Procedia. 2014;60:156–65.

    Article  CAS  Google Scholar 

  10. Madarász J, Bombicz P, Okuya M, Kaneko S. Thermal decomposition of thiourea complexes of Cu(I), Zn(II), and Sn(II) chlorides as precursors for the spray pyrolysis deposition of sulfide thin films. Solid State Ionics. 2001;141–142:439–46.

    Article  Google Scholar 

  11. Madarász J, Bombicz P, Okuya M, Kaneko S, Pokol G. Comparative online coupled TG-FTIR and TG/DTA-MS analyses of the evolved gases from thiourea complexes of SnCl2: tetrachloropenta(thiourea) ditin(II), a compound rich in thiourea. J Anal Appl Pyrolysis. 2004;72:209–14.

    Article  Google Scholar 

  12. Madarász J, Bombicz P, Okuya M, Kaneko S, Pokol G. Online coupled TG–FTIR and TG/DTA–MS analyses of the evolved gases from dichloro(thiourea) tin(II). Solid State Ion. 2004;172:577–81.

    Article  Google Scholar 

  13. NIST Chemistry WebBook Standard Reference Database No 69, June 2005 Release, http://webbook.nist.gov/chemistry.

  14. Krunks M, Madarász J, Hiltunen L, Mannonen R, Mellikov E, Niinistö L. Structure and thermal behaviour of dichlorobis(thiourea)cadmium(II), a single-source precursor for CdS thin films. Acta Chem Scand. 1997;51:294–301.

    Article  CAS  Google Scholar 

  15. El-Bahy GMS, El-Sayed BA, Shabana AA. Vibrational and electronic studies on some metal thiourea complexes. Vib Spectrosc. 2003;31:101–7.

    Article  CAS  Google Scholar 

  16. Otto K, Oja Acik I, Tõnsuaadu K, Mere A, Krunks M. Thermoanalytical study of precursors for In2S3 thin films deposited by spray pyrolysis. J Therm Anal Calorim. 2011;105:615–23.

    Article  CAS  Google Scholar 

  17. Bombicz P, Mutikainen I, Krunks M, Leskelä T, Madarász J, Niinistö L. Synthesis, vibrational spectra and X-ray structures of copper (I) thiourea complexes. Inorg Chim Acta. 2004;357:513–25.

    Article  CAS  Google Scholar 

  18. Krunks M, Mellikov E, Bijakina O. Intermediate compounds in formation of copper sulfides by spray pyrolysis. Proc Estonian Acad Sci Engin. 1996;2:98–106.

    CAS  Google Scholar 

  19. International Centre for Diffraction Data (ICDD), Powder Diffraction File (PDF), PDF-2 Release 2008.

  20. Donaldson JD, Grimes SM. X-Ray crystal structure determinations of two thiourea tin(II) complexes: diacetatobis(thiourea)tin(II) and ditin(II)tetrabromopenta(thiourea)dihydrate. Inorg Chim Acta. 1984;84:173–7.

    Article  CAS  Google Scholar 

  21. Cassidy JE, Moser W, Donaldson JD, Jelen A, Nicholson DG (1970) Thiourea complexes of tin(II) compounds. J Chem Soc A, 173–175.

  22. Oja Acik I, Otto K, Krunks M, Tõnsuaadu K, Mere A. Thermal behaviour of precursors for CuInS2 thin films deposited by spray pyrolysis. J Therm Anal Calorim. 2013;113:1455–65.

    Article  CAS  Google Scholar 

  23. Madarász J, Pokol G. Comparative evolved gas analysis on thermal degradation of thiourea by coupled TG-FTIR and TG/DTA-MS instruments. J Therm Anal Calorim. 2007;88:329–36.

    Article  Google Scholar 

  24. Krunks M, Leskelä T, Mannonen R, Niinistö L. Thermal decomposition of copper(I) thiocarbamide chloride hemihydrate. J Therm Anal Calorim. 1998;53:355–64.

    Article  CAS  Google Scholar 

  25. Otto K, Bombicz P, Madarász J, Oja Acik I, Krunks M, Pokol G. Structure and evolved gas analyses (TG/DTA-MS and TG-FTIR) of mer-trichlorotris(thiourea)-indium(III), a precursor for indium sulfide thin films. J Therm Anal Calorim. 2011;105:83–91.

    Article  CAS  Google Scholar 

  26. Krunks M, Madarász J, Leskelä T, Mere A, Niinistö L, Pokol G. Study of zinc thiocarbamide chloride, a single-source precursor for zinc sulfide thin films by spray pyrolysis. J Therm Anal Calorim. 2003;72:497–506.

    Article  CAS  Google Scholar 

  27. Nyquist RA, Putzig CL, Leugers MA. Handbook of infrared and Raman spectra of inorganic compounds and organic salts: text and explanations, vol. 1. San Diego: Academic Press; 1997.

    Google Scholar 

  28. Krunks M, Leskelä T, Mutikainen I, Niinistö L. A thermoanalytical study of copper(I) thiocarbamide compounds. J Therm Anal Calorim. 1999;56:479–84.

    Article  CAS  Google Scholar 

  29. Wang S, Gao Q, Wang J. Thermodynamic analysis of decomposition of thiourea and thiourea oxides. J Phys Chem B. 2005;109:17281–9.

    Article  CAS  Google Scholar 

  30. Ristic M, Ivanda M, Popovic S, Music S. Dependence of nanocrystalline SnO2 particle size on synthesis route. J Non-Cryst Solids. 2002;303:270–80.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Estonian Ministry of Education and Research (IUT-19-4), the Estonian Science Foundation (ETF9081), and by the European Union through the European Regional Development Fund (Projects: 3.2.0101.11-0029 and 3.2.1101.12-0023). The authors thank Dr. Valdek Mikli for EDS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Oja Acik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polivtseva, S., Oja Acik, I., Krunks, M. et al. Thermoanalytical study of precursors for tin sulfide thin films deposited by chemical spray pyrolysis. J Therm Anal Calorim 121, 177–185 (2015). https://doi.org/10.1007/s10973-015-4580-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4580-6

Keywords

Navigation