Skip to main content
Log in

The thermal decomposition mechanism of nitrocellulose aerogel

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nitrocellulose (NC) aerogel was prepared by sol–gel synthetic approach and supercritical carbon dioxide drying method as a new energetic matrix for nano-composite energetic materials. Scanning electron microscopy of the NC aerogel reveals that the aerogel is accumulated by nanoparticles with a diameter of 30–50 nm and has nano-porous structure, which makes the thermal behavior of the NC aerogel different from that of the NC fibers. Therefore, the thermal properties of NC aerogel were determined by TG/DSC, which showed that the maximum decomposition temperature and the exothermic peak temperature of NC aerogel decreased 8.2 and 11.4 °C than NC fibers, respectively. By TG/FTIR technology combined FTIR test of the condensed phase, the decomposition mechanism was derived based on the experimental results. The initial reaction of NC aerogel decomposition is the splitting of urethane bond, and then, the scission of –O–NO2 bonds happens. Moreover, the macromolecular chains’ scission site of NC aerogel firstly occurs at –C–O–C– in the ring, while the chains of NC fibers break at –C–O–C– between the rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Scheme 2
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. Tillotson TM, Hrubesh LW, Simpson RL, Lee RS, Swansiger RW, Simpson LR. Sol–gel processing of energetic materials. J Non Cryst Solids. 1998;225:358–63.

    Article  CAS  Google Scholar 

  2. Tillotson TM, Gash AE, Simpson RL, Hrubesh LW, Satcher JH, Poco JF. Nanostructured energetic materials sing sol–gel methodologies. J Non Cryst Solids. 2001;285:338–45.

    Article  CAS  Google Scholar 

  3. Gao K, Li G, Luo Y, et al. Preparation and characterization of the AP/Al/Fe2O3 ternary nano-thermites. J Therm Anal Calorim. 2014;118:43–9.

    Article  CAS  Google Scholar 

  4. Comet M, Siegert B, Pichot V, et al. Reactive characterization of nanothermites. J Therm Anal Calorim. 2013;111:431–6.

    Article  CAS  Google Scholar 

  5. Leventis N, Chandrasekaran N. Sadekar AG, One-pot synthesis of interpenetrating inorganic/organic networks of CuO/resorcinol-formaldehyde aerogels: nanostructured energetic materials. J Am Chem Soc. 2009;31:4576–7.

    Article  Google Scholar 

  6. Chen R, Luo Y, Sun J, Li G. Preparation and properties of an AP/RDX/SiO2 nanocomposite energetic material by the sol–gel method. Propel Expl Pyrot. 2012;37:422–6.

    Article  CAS  Google Scholar 

  7. Gash AE, Simpson RL, Satcher JH, Nanostructured energetic materials with sol–gel chemistry. LLNL. 2003; 201119.

  8. Chen X, Song G, Sun J. Preparation of HMX–AP–SiO2 nano-composite energetic materials by sol–gel method. China Powder Sci Technol. 2012;18:47–54.

    Google Scholar 

  9. Nie F, Zhang J, Guo Q, Qiao Z, Zeng G. Sol–gel synthesis of nanocomposite crystalline HMX/AP coated by resorcinol–formaldehyde. J Phys Chem Solids. 2010;71:109–13.

    Article  CAS  Google Scholar 

  10. Jin M, Luo Y. Preparation and characterization of RF/AP nano-composite energetic materials. Chin J Explos Propel. 2012;35:65–9.

    CAS  Google Scholar 

  11. Tappan BC, Brill TB. Thermal decomposition of energetic materials 85: cryogels of nanoscale hydrazinium diperchlorate in Resorcinol-Formaldehyde. Propel Expl Pyrot. 2003;28:72–6.

    Article  CAS  Google Scholar 

  12. Wang X, Li J, Luo Y, Huang M. A novel ammonium perchlorate/graphene aerogel nanostructured energetic composite: preparation and thermal decomposition. Sci Adv Mater. 2014;6:530–7.

    Article  CAS  Google Scholar 

  13. Osada H. Kayaku chemistry. Tokyo: Maruzen; 2003. p. 190–2.

    Google Scholar 

  14. Katoh K, Ito S, Kawaguchi S. Effect of heating rate on the thermal behavior of nitrocellulose. J Therm Anal Calorim. 2010;100:303–8.

    Article  CAS  Google Scholar 

  15. Tappan BC, Brill TB. Thermal decomposition of energetic materials 85: cryogels of nanoscale hydrazinium diperchlorate in Resorcinol-Formaldehyde. Propel Expl Pyrot. 2003;28:72–6.

    Article  CAS  Google Scholar 

  16. Li J, Brill TB. Nanostructured energetic composites of CL-20 and binders synthesized by sol–gel methods. Propel Expl Pyrot. 2006;31:61–9.

    Article  Google Scholar 

  17. Tappan BC, Brill TB. Thermal decomposition of energetic materials 86. Cryogel synthesis of nanocrystalline CL-20 coated with cured nitrocellulose. Propel Expl Pyrot. 2003;28:223–30.

    Article  CAS  Google Scholar 

  18. Jin M, Luo Y. Preparation and characterization of nitrocellulose aerogel. Chin J Explos Propel. 2013;36:82–6.

    CAS  Google Scholar 

  19. Sovizi MR, Hajimirsadeghi SS, Naderizadeh B. Effect of particle size on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;168:1134–9.

    Article  CAS  Google Scholar 

  20. Yoshitake N, Furukawa M. Thermal degradation mechanism of α, γ-diphenyl alkyl allophanate as a model polyurethane by pyrolysis-high-resolution gas chromatography/FT-IR. J Anal Appl Pyrol. 1995;33:269–81.

    Article  CAS  Google Scholar 

  21. Berger B, Charsley EL, Warrington SB. Characterization of the zirconium/potassium perchlorate/nitrocellulose pyrotechnic system by simultaneous thermogravimetry–differential thermal analysis–mass spectrometry. Propel Expl Pyrotech. 1995;20:266–72.

    Article  CAS  Google Scholar 

  22. Rychlý J, Lattuati-Derieux A, Matisová-Rychlá L, et al. Degradation of aged nitrocellulose investigated by thermal analysis and chemiluminescence. J Therm Anal Calorim. 2012;107:1267–76.

    Article  Google Scholar 

  23. Makashir PS, Mahajan RR, Agrawal JJ. Studies on kinetics and mechanism of initial thermal decomposition of nitrocellulose. J Therm Anal Calorim. 1995;45:501–9.

    Article  CAS  Google Scholar 

  24. Binke N, Rong L, Zhengquan Y, Yuan W, Rongzu YPH, Qingsen Y. Studies on the kinetics of the first order autocatalytic decomposition reaction of highly nitrated nitrocellulose. J Therm Anal Calorim. 1999;58:403–11.

    Article  CAS  Google Scholar 

  25. Dauerman L, Tajima YA. Thermal decomposition and combustion of nitrocellulose. Aiaa J. 1968;6:1468–73.

    Article  CAS  Google Scholar 

  26. Zeman S. New dependence of activation energies of nitroesters thermolysis and possibility of its application. Propel Expl Pyrot. 1992;17:17–9.

    Article  CAS  Google Scholar 

  27. Levchik SV, Weil ED. Thermal decomposition, combustion and fire-retardancy of polyurethanes—a review of the recent literature. Polym Int. 2004;53:1585–610.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoping Li or Yunjun Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, M., Luo, N., Li, G. et al. The thermal decomposition mechanism of nitrocellulose aerogel. J Therm Anal Calorim 121, 901–908 (2015). https://doi.org/10.1007/s10973-015-4574-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4574-4

Keywords

Navigation