Skip to main content
Log in

Wavelength-sensitive energy storage in Sr3MgSi2O8:Eu2+,Dy3+

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Optical energy storage materials can store energy when exposed to radiation and subsequently release it as light after thermal or optical stimulation. Such materials are thus employed in, e.g., detectors, dosimetry, self-lit signs, and imaging. In, e.g., dosimetry, the response of the material is correlated with the absorbed energy, but no distinction of different radiation energies can be achieved. In this work, Sr3MgSi2O8:Eu2+,Dy3+ was studied with thermoluminescence (TL) initiated by irradiating the material with photon energies between 2.6 (480) and 5.4 eV (230 nm). The TL glow curves revealed that the material has two main traps. Both the overall TL intensity and the TL intensity ratio between the two traps strongly depend on the photon energy of the irradiation. A mechanism of energy storage and charge carrier release in this material was constructed from the results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. McKeever SWS. Optically stimulated luminescence: a brief overview. Radiat Meas. 2011;46:1336–41.

    Article  CAS  Google Scholar 

  2. Bos AJJ. Theory of thermoluminescence. Radiat Meas. 2007;41:S45–56.

    Article  CAS  Google Scholar 

  3. McKeever SWS, Moscovitch M. Topics under debate—on the advantages and disadvantages of optically stimulated luminescence dosimetry and thermoluminescence dosimetry. Radiat Prot Dosim. 2003;104:263–79.

    Article  CAS  Google Scholar 

  4. Yukihara EG, Coleman AC, Doull BA. Passive temperature sensing using thermoluminescence: laboratory tests using Li2B4O7:Cu,Ag, MgB4O7:Dy,Li and CaSO4:Ce,Tb. J Lumin. 2014;146:515–26.

    Article  CAS  Google Scholar 

  5. Wintle AG. Fifty years of luminescence dating. Archaeometry. 2008;50:276–312.

    Article  CAS  Google Scholar 

  6. Lin Y, Tang Z, Zhang Z, Wang X, Zhang J. Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor. J Mater Sci Lett. 2001;20:1505–6.

    Article  CAS  Google Scholar 

  7. Lin Y, Tang Z, Zhang Z, Nan CW. Luminescence of Eu2+ and Dy3+ activated R3MgSi2O8-based (R=Ca, Sr, Ba) phosphors. J Alloys Compd. 2003;348:76–9.

    Article  CAS  Google Scholar 

  8. Lastusaari M, Eskola KO, Hölsä J, Jungner H, Laamanen T, Malkamäki M, Optical energy storage properties of Sr3MgSi2O8:Eu2+, R3+ materials, In: Proceedings in European Conference Solid State Chem (ECSSC XII). Münster, Germany, September 20–23, 2009.

  9. Chen R, McKeever SWS. Theory of thermoluminescence and related phenomena. Singapore: World Scientific; 1997.

    Book  Google Scholar 

  10. Chung KS. TL glow curve analyzer v. 1.0.3. Korea: Korea Atomic Energy Research Institute and Gyeongsang National University; 2008.

    Google Scholar 

  11. Hwangbo S, Jeon Y-S, Kang B-A, Kim Y-S, Hwang K-S, Kim J-T. Sol-gel derived blue-emitting Sr3MgSi2O8:Eu2+ oxide phosphor for ultraviolet emitting diodes. J Ceram Proc Res. 2010;11:513–5.

    Google Scholar 

  12. Pan W, Ning G-L, Wang J-H, Yuan L. A Novel synthesis of alkaline earth silicate phosphor Sr3MgSi2O8:Eu2+,Dy3+. Chin J Chem. 2007;25:605–8.

    Article  CAS  Google Scholar 

  13. van den Eeckhout K, Bos AJJ, Poelman D, Smet P. Revealing trap depth distributions in persistent phosphors. Phys Rev B. 2013;87:045126.

    Article  Google Scholar 

  14. Brito HF, Hassinen J, Hölsä J, Jungner H, Laamanen T, Lastusaari M, Malkamäki M, Niittykoski J, Novák P, Rodrigues LCV. Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials. J Therm Anal Calorim. 2011;105:657–62.

    Article  CAS  Google Scholar 

  15. Rodrigues LCV, Stefani R, Brito HF, Felinto MCFC, Hölsä J, Lastusaari M, Laamanen T, Malkamäki M. Thermoluminescence and synchrotron radiation studies on the persistent luminescence of BaAl2O4:Eu2+,Dy3+. J Solid State Chem. 2010;183:2365–71.

    Article  CAS  Google Scholar 

  16. Bettentrup H, Eskola KO, Hölsä J, Kotlov A, Lastusaari M, Malkamäki M. Luminescence properties of Eu3+ and TiIV/ZrIV doped yttrium oxysulfides (Y2O2S:Eu3+,TiIV/ZrIV). IOP Conf Ser Mater Sci Eng. 2010;15:012085.

    Article  Google Scholar 

  17. Bos AJJ, Vijverberg RNM, Piters TM, McKeever SWS. Effects of cooling and heating rate on trapping parameters in LiF:Mg, Ti crystals. J Phys D Appl Phys. 1992;25:1249–57.

    Article  CAS  Google Scholar 

  18. Yukihara EG, Whitley VH, Polf JC, Klein DM, McKeever SWS, Akselrod AE, Akselrod MS. The effects of deep trap population on the thermoluminescence of Al2O3:C. Radiat Meas. 2003;37:627–38.

    Article  CAS  Google Scholar 

  19. Lakshmanan AR, Vohra KG. Gamma radiation induced sensitization and photo-transfer in Mg2SiO4:Tb TLD phosphor. Nucl Instr Meth. 1979;159:585–92.

    Article  CAS  Google Scholar 

  20. Lei B, Machida K, Horikawa T, Hanzawa H, Kijima N, Shimomura Y, Yamamoto H. Reddish-orange long-lasting phosphorescence of Ca2Si5N8:Eu2+,Tm3+ phosphor. J Electrochem Soc. 2010;157:J196–201.

    Article  CAS  Google Scholar 

  21. Smet P, van den Eeckhout K, Bos AJJ, van der Kolk E, Dorenbos P. Temperature and wavelength dependent trap filling in M2Si5N8:Eu (M: Ca, Sr, and Ba) persistent phosphors. J Lumin. 2012;132:682–9.

    Article  CAS  Google Scholar 

  22. Dorenbos P. Modeling the chemical shift of lanthanide 4f electron binding energies. Phys Rev B. 2012;85:165107.

    Article  Google Scholar 

  23. Dorenbos P. The electronic level structure of lanthanide impurities in REPO4, REBO3, REAlO3, and RE2O3 (RE=La, Gd, Y, Lu, Sc) compounds. J Phys Condens Matter. 2013;25:225501.

    Article  Google Scholar 

  24. Dorenbos P. Ce3+ 5d-centroid shift and vacuum referred 4f-electron binding energies of all lanthanide impurities in 150 different compounds. J Lumin. 2013;135:93–104.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Drs Aleksei Kotlov and Edmund Welter (HASYLAB, DESY) are thanked for their help during the measurements at the SUPERLUMI and A1 beamlines, respectively, of HASYLAB. Financial support from the Palomaa-Erikoski foundation, Academy of Finland and CNPq (Brazil), Finnish Funding Agency for Technology and Innovation (TEKES) as well as the European Union is gratefully acknowledged. Part of the research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 312284.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mika Lastusaari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lastusaari, M., Bos, A.J.J., Dorenbos, P. et al. Wavelength-sensitive energy storage in Sr3MgSi2O8:Eu2+,Dy3+ . J Therm Anal Calorim 121, 29–35 (2015). https://doi.org/10.1007/s10973-015-4571-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4571-7

Keywords

Navigation