Skip to main content
Log in

Quantitative thermal analysis of α-C2SH as a precursor for low-energy cements

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, a combined method of using DSC, TG and XRD analysis in order to determine an amount of decomposed α-C2SH in its tribochemically activated mixture with quartz is presented. Furthermore, the influence of the grinding on the phase transition and heat flow during the hydration of this mixture is determined. The results showed that the product in which α-C2SH prevails is obtained after 12 h of the hydrothermal synthesis at 200 °C in stirred (50 rpm) suspensions. The purification of mentioned product using distilled water (water/solid = 500) for 5 min is enough to eliminate remaining Ca(OH)2. The stability of α-C2SH during the purification was confirmed using DSC and XRD analysis. A strong correlation between heat absorption values of the α-C2SH decomposition at 470 °C and its quantity in the mixture with quartz was noticed (R 2 = 0.9929). According to the plotted calibration curve, the amount of decomposed α-C2SH during the tribochemical activation was determined: within the first minute, it reaches 32.28 % and gradually increases to 48.73 % after 20 min. During the decomposition of α-C2SH, the semi-crystalline calcium silicate hydrates form, which recrystallize to wollastonite at 850 °C; meanwhile, the remaining α-C2SH transforms to larnite. The complex tribochemical and thermal activation of α-C2SH–quartz mixture leads to a vivid increment of its hydraulic activity: the heat flow of the main hydration reaction and the total heat values reached 3.1 mW g−1 and 104.48 J g−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Peters GP, Marland G, Le Quere C, Boden T, Canadell JG, Raupach MR. Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nat Clim Change. 2012;2:2–4.

    Article  CAS  Google Scholar 

  2. Goni S, Guerrero A. Study of alkaline hydrothermal activation of belite cements by thermal analysis. J Therm Anal Calorim. 2010;99:471–7.

    Article  CAS  Google Scholar 

  3. Siauciunas R, Mikaliunaite J, Urbonas L, Baltakys K. Tribochemical and thermal activation of α-C2S hydrate as a precursor for cementitious binders. J Therm Anal Calorim. 2014. doi:10.1007/s10973-014-3921-1.

    Google Scholar 

  4. Stemmermann P, Schweike U, Garbev K, Beuchle G. Celitement—a sustainable prospect for the cement industry. Cem Int. 2010;8:52–66.

    Google Scholar 

  5. Meducin F, Zanni H, Noik C, Bresson B. Tricalcium silicate (C3S) hydration under high pressure at ambient and high temperature (200 °C). Cem Concr Res. 2008;38:320–4.

    Article  CAS  Google Scholar 

  6. Yano T, Urabe K, Ikawa H, Teraushi T, Ishizawa N, Udagawa S. Structure of α-dicalcium silicate hydrate. Acta Cryst. 1993;C47:1555–9.

    Google Scholar 

  7. Yanagisawa K, Hu X, Onda A, Kajiyoshi K. Hydration of β-dicalcium silicate at high temperatures under hydrothermal conditions. Cem Concr Res. 2006;36:810–6.

    Article  CAS  Google Scholar 

  8. Luke K. Phase studies of pozzolanic stabilized calcium silicate hydrates at 180 °C. Cem Concr Res. 2004;34:1725–32.

    Article  CAS  Google Scholar 

  9. Shatat MR. Effect of hydrothermal curing on the hydration characteristics of artificial pozzolanic cement pastes placed in closed system. Appl Clay Sci. 2014;96:110–5.

    Article  CAS  Google Scholar 

  10. Yazici H, Deniz E, Baradan B. The effect of autoclave pressure, temperature and duration time on mechanical properties of reactive powder concrete. Constr Build Mater. 2013;42:53–63.

    Article  Google Scholar 

  11. Jing Z, Fan X, Zhou L, Fan J, Zhang Y, Pan X, Ishida EH. Hydrothermal solidification behavior of municipal solid waste incineration bottom ash without any additives. Waste Manag. 2013;33:1182–9.

    Article  CAS  Google Scholar 

  12. Palou M, Zivica V, Ifka T, Bohac M, Zmrzly M. Effect of hydrothermal curing on early hydration of G-Oil well cement. J Therm Anal Calorim. 2014;116:597–603.

    Article  CAS  Google Scholar 

  13. Heller L. The structure of dicalcium silicate α-hydrate. Acta Cryst. 1952;5:724–8.

    Article  CAS  Google Scholar 

  14. Midgley HG, Chopra SK. Hydrothermal reactions in the lime-rich part of the system CaO–SiO2. Mag Concr Res. 1960;34:19–26.

    Article  Google Scholar 

  15. Imlach BV, Taylor HFW. Prolonged hydrothermal treatment of cement mixes I. Curing in water under saturated steam pressure at 140–170 °C. Trans Br Ceram Soc. 1972;71:71–5.

    CAS  Google Scholar 

  16. Hu X, Yanagisawa K, Onda Y, Kajiyoshi K. Stability and phase relations of dicalcium silicate hydrates under hydrothermal conditions. J Ceram Soc Jpn. 2006;114:174–9.

    Article  CAS  Google Scholar 

  17. Ishida H, Yamazaki S, Sasaki K, Okada Y, Mitsuda T. α-dicalcium silicate hydrate: preparation, decomposed phase and its hydration. J Am Ceram Soc. 1993;76:1707–12.

    Article  CAS  Google Scholar 

  18. Garbev K, Gasharova B, Beuchle G, Kreisz S, Stemmermann P. First observation of α-Ca2[SiO3(OH)](OH)–Ca6[Si2O7][SiO4](OH)2 phase transformation upon thermal treatment in air. J Am Ceram Soc. 2008;91:263–71.

    Article  CAS  Google Scholar 

  19. Baltakys K, Dambrauskas T, Siauciunas R, Eisinas A. Formation of α-C2S hydrate in the mixtures with CaO/SiO2 = 1.75 by hydrothermal treatment at 200 °C. Romanian J Mater. 2014;44:109–15.

    CAS  Google Scholar 

  20. Siauciunas R, Rupsyte E. Formation of high basic calcium hydro silicates in mixtures with aluminium additions. Chem Technol. 2000;47:47–54 (in Lithuanian).

    Google Scholar 

  21. Colston SL, Barnes P, Jupe AC, Jacques SDM, Hall C, Livesey P, Dransfield J, Meller N, Maitland GC. An in situ synchrotron energy-dispersive diffraction study of the hydration of oilwell cement systems under high temperature/autoclave conditions up to 130 °C. Cem Concr Res. 2005;35:2223–32.

    Article  CAS  Google Scholar 

  22. Garbev K, Beuchle G, Schweike U, Stemmermann P. Hydration behaviour of Celitement®: Kinetics, phase composition, microstructure and mechanical properties. 13th ICCC, Madrid, Spain; 2011.

  23. Bresson B, Meducin F, Zanni HJ. Hydration of tricalcium silicate (C3S) at high temperature and high pressure. J Mater Sci. 2002;37:5355–65.

    Article  CAS  Google Scholar 

  24. Erdogan ST. Effect of clinker phase distribution within cement particles on properties of a hydrating cement paste. Constr Build Mater. 2013;38:941–9.

    Article  Google Scholar 

  25. Lagergren S. About the theory of so-called adsorption of soluble substances. Bihang till K. Svenska vet.-Akad Handlingar. 1898;4:1–39.

    Google Scholar 

  26. Ho YS, Wase DAJ, Forster CF. Kinetic studies of competitive heavy metal adsorption by sphagnum moss peat. Environ Technol. 1996;17:71–7.

    Article  CAS  Google Scholar 

  27. Duchesne J, Reardon EJ. Measurement and prediction of portlandite solubility in alkali solutions. Cem Concr Res. 1995;25:1043–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by a Grant (No. MIP – 077/2012) from the Research Council of Lithuania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gendvilas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gendvilas, R., Siauciunas, R. & Baltakys, K. Quantitative thermal analysis of α-C2SH as a precursor for low-energy cements. J Therm Anal Calorim 121, 155–162 (2015). https://doi.org/10.1007/s10973-015-4570-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4570-8

Keywords

Navigation