Skip to main content
Log in

LaPO4: Ce, Tb, Yb phosphor—synthesis and kinetics study for thermal process of precursor by Vyazovkin, OFW, KAS, Starink, and Mastplosts methods

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Precursor, La0.85Ce0.05Tb0.05Yb0.05PO4·3.91H2O was synthesized via solid-state reaction at 60 °C. The experimental results show that the synthesized product is hexagonal La0.85Ce0.05Tb0.05Yb0.05PO4·3.91H2O, and monoclinic La0.85Ce0.05Tb0.05Yb0.05PO4 is a novel yellowish-green emitting phosphor, which can be obtained after calcining La0.85Ce0.05Tb0.05Yb0.05PO4·3.91H2O at 800 °C in air. Based on the isoconversional procedures, the values of activation energy E α associated with the thermal decomposition of the precursor were obtained by using OFW, KAS, Starink, and Vyazovkin methods. The values of activation energy E α indicate that the decomposition is single-step kinetic process. The most probable reaction mechanism was estimated by Mastplosts and nonlinear methods. Mechanism equations obtained from the two methods are the same, which the nonlinear method is more efficient than the Mastplosts method. The value of pre-exponential factor A was obtained based on of E α and the reaction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Heer S, Lehmann O, Haase M, Güdel HU. Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution. Angew Chem Int Ed. 2003;42:3179–82.

    Article  CAS  Google Scholar 

  2. Meyssamy H, Riwotzki K, Kornowski A, Naused S, Haase M. Wet-chemical synthesis of doped colloidal nanomaterials: particles fibers of LaPO4:Eu, LaPO4:Ce, and LaPO4:Ce,Tb. Adv Mater. 1999;11:840–4.

    Article  CAS  Google Scholar 

  3. Lehmann O, Kömpe K, Haase M. Synthesis of Eu3+-doped core and core/shell nanoparticles and direct spectroscopic identification of dopant sites at the surface and in the interior of the particles. J Am Chem Soc. 2004;126:14935–42.

    Article  CAS  Google Scholar 

  4. Adachi GY, Imanaka N. The binary rare earth oxides. Chem Rev. 1998;98:1479–514.

    Article  CAS  Google Scholar 

  5. Haase M, Riwotzki K, Meyssamy H, Kornowski A. Synthesis and properties of colloidal lanthanide-doped nanocrystals. J Alloys Compd. 2000;303:191–7.

    Article  Google Scholar 

  6. Riwotzki K, Meyssamy H, Schnablegger H, Kornowski A, Haase M. Synthese von Kolloiden und redispergierbaren Pulvern stark lumineszierender LaPO4:Ce. Tb-Nanokristalle. Angew Chem Int Ed. 2001;113:573–8.

    Article  Google Scholar 

  7. Firsching FH, Brune SN. Solubility products of the trivalent rare-earth phosphates. J Chem Eng Data. 1991;36:93–5.

    Article  CAS  Google Scholar 

  8. Rouanel A, Serra JJ, Allaf K, Orlovskii VP. Rare-earth orthophosphates at high temperatures. Inorg Mater. 1981;17:76–81.

    Google Scholar 

  9. Guo Y, Woznicki P, Barkatt A, Saad EE, Talmy IG. Sol–gel synthesis of microcrystalline rare earth orthophosphates. J Mater Res. 1996;11:639–49.

    Article  CAS  Google Scholar 

  10. Zhang Q, Wang J, Zhang G, Su Q. UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl: Ce3+, Tb3+, Yb3+ phosphor. J Mater Chem. 2009;19:7088–92.

    Article  CAS  Google Scholar 

  11. Huang XY, Yu DC, Zhang QY. Enhanced near-infrared quantum cutting in GdBO: Tb3+, Yb3+ phosphors by Ce3+ codoping. J Appl Phys. 2009;106:113121.

    Google Scholar 

  12. Phaomei G, Singh WR, Ningthoujam RS. Solvent effect in monoclinic to hexagonal phase transformation in LaPO4, RE (RE = Dy3+, Sm3+) nanoparticles, photoluminescence study. J Lumin. 2011;131:1164–71.

    Article  CAS  Google Scholar 

  13. Solarz P, Sobczyk M. Spectroscopic properties of Sm3+ in KZnLa(PO4)2 in IR–VUV region. Opt Mater. 2012;34:1826–32.

    Article  CAS  Google Scholar 

  14. Dorman JA, Choi JH, Kuzmanich G, Chang JP. High-quality white light using core-shell RE3+, LaPO4 (RE = Eu, Tb, Dy, Ce) phosphors. J Phys Chem C. 2012;116:12854–60.

    Article  CAS  Google Scholar 

  15. Li LP, Su YG, Li GS. Chemical modifications of red phosphor LaPO4, Eu3+ nanorods to generate white light. J Mater Chem. 2010;20:455–69.

    Google Scholar 

  16. Li X, Bi HF. Template-free synthesis of LaPO4, Eu3+ hollow spheres with enhanced luminescent properties. J Alloys Compd. 2012;532:72–7.

    Article  CAS  Google Scholar 

  17. Sankar S, Raj AN, Jyothi CK, Warrier KGK, Padmanabhan PVA. Room temperature synthesis of high temperature stable lanthanum phosphate-yttria nano composite. Mater Res Bull. 2012;47:1835–7.

    Article  CAS  Google Scholar 

  18. Muraleedharan K. Thermal decomposition kinetics of potassium iodate Part II. Effect of gamma-irradiation on the rate and kinetics of decomposition. J Therm Anal Calorim. 2013;114:491–6.

    Article  CAS  Google Scholar 

  19. Ghumara RY, Adroja PP, Parsania PH. Synthesis, characterization, and dynamic DSC curing kinetics of novel epoxy resin of 2,4,6-tris (4-hydroxyphenyl) -1-3-5- triazine. J Therm Anal Calorim. 2013;114:873–81.

    Article  CAS  Google Scholar 

  20. Bodescu AM, Sirghie C, Vlase T, Doca N. Comparative kinetics studies of thermal decomposition of kalium, respectively natrium oxalato-oxo-diperoxo molybdate. J Therm Anal Calorim. 2013;113:1431–5.

    Article  CAS  Google Scholar 

  21. Weng SY, Liu SH, Tsai LC, Hsieh TF, Ma CM, Shu CM. Thermokinetics simulation for multi-walled carbon nanotubes with sodium alginate by advanced kinetics and technology solutions. J Therm Anal Calorim. 2013;113:1603–10.

    Article  CAS  Google Scholar 

  22. Huang MX, Zhou CR, Han XW. Investigation of thermal decomposition kinetics of taurine. J Therm Anal Calorim. 2013;113:589–93.

    Article  CAS  Google Scholar 

  23. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  24. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178–83.

    Article  CAS  Google Scholar 

  25. Wan JT, Li C, Fan H, Bu ZY, Li BG. Elucidating isothermal crystallization behaviors of nylon-11s Influence of star-chain branching. Thermochim Acta. 2012;544:99–104.

    Article  CAS  Google Scholar 

  26. Omrani A, Rostami AA, Khostavan S, Vazifeshenas Y. Preparation characterization and application of advanced isoconversional kinetics to epoxy/1 4-Bis (3-aminopropoxy) butane/MWCNT nanocomposite. Compos A. 2012;43:381–7.

    Article  CAS  Google Scholar 

  27. Gotor FJ, Criado JM, Malek J, Koga N. Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A. 2000;104:10777–82.

    Article  CAS  Google Scholar 

  28. Vyazovkin S, Wight CA. Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids. Int Rev Phys Chem. 1998;17:407–33.

    Article  CAS  Google Scholar 

  29. Jankovic B, Marinovic-Cincovic M, Jovanovic V, Samarzija-Jovanovic S, Markovic G. The comparative kinetic analysis of non-isothermal degradation process of acrylonitrile-butadiene and ethylene-propylene-diene rubber compounds. Part I. Thermochim Acta. 2012;543:295–303.

    Article  CAS  Google Scholar 

  30. Jankovic B, Adnadevic B, Jankovic J. Application of model-fitting and model-free kinetics to the study of non-isothermal dehydration of equilibrium swollen poly (acrylic acid) hydrogel: thermogravimetric analysis. Thermochim Acta. 2007;452:106–15.

    Article  CAS  Google Scholar 

  31. Chen ZP, Chai Q, Liao S, Chen X, He Y, Li Y, Wu WW, Li B. Non-isothermal kinetics study: IV. Comparative methods to evaluate Ea for thermal decomposition of KZn2(PO4)(HPO4) synthesized by a simple route. Ind Eng Chem Res. 2012;51:8985–91.

    Article  CAS  Google Scholar 

  32. He Y, Liao S, Chen ZP, Li Y, Xia Y, Wu WW, Li B. Non-isothermal kinetics study with isoconversional procedure and DAEM: LiCoPO4 synthesized from thermal decomposition of the precursor. Ind Eng Chem Res. 2013;52:1870–6.

    Article  CAS  Google Scholar 

  33. Li Y, Chai Q, Liao S, Chen ZP, He Y, Xia Y, Wu WW, Li B. Non-isothermal kinetics study with isoconversional procedure and DAEM: thermal decomposition of LaPO4:Ce, Tb·0.5H2O. Mater Chem Phys. 2013;142:453–8.

    Article  CAS  Google Scholar 

  34. Senum GI, Yang RT. Rational approximations of the integral of the Arrhenius function. J Therm Anal. 1977;11:445–7.

    Article  Google Scholar 

  35. Farjas J, Roura P. Isoconversional analysis of solid state transformations: A critical review. Part I. Single step transformations with constant activation energy. J Therm Anal Calorim. 2011;105:757–66.

    Article  CAS  Google Scholar 

  36. Jiang HY, Wang JG, Wu SQ, Wang BS, Wang ZZ. Pyrolysis kinetics of phenol-formaldehyde resin by non-isothermal thermogravimetry. Carbon. 2010;48:352–8.

    Article  CAS  Google Scholar 

  37. Diaz-Guillèna JA, Fuentes AF, Colomer MT. A rapid method to obtain nanometric particles of rhabdophane LaPO4·nH2O by mechanical milling. J Alloys Compd. 2007;427:87–93.

    Article  Google Scholar 

  38. Niu N, Yang PP, Wang Y, Wang WX, He F, Gai SL, Wang D. LaPO4:Eu3+, LaPO4:Ce3+, and LaPO4:Ce3+, Tb3+ nanocrystals: Oleic acid assisted solvothermal synthesis, characterization, and luminescent properties. J Alloys Compd. 2011;509:3096–102.

    Article  CAS  Google Scholar 

  39. Yang M, You HP, Liu K, Zheng YH, Guo N, Zhang HJ. Low-temperature coprecipitation synthesis and luminescent properties of LaPO4:Ln3+(Ln3+ = Ce3+, Tb3+) nanowires and LaPO4:Ce3+, Tb3+/LaPO4 core/shell nanowires. Inorg Chem. 2010;49:4996–5002.

    Article  CAS  Google Scholar 

  40. Gao X, Dollimore D. The thermal decomposition of oxalates, Part 26. A kinetic study of the thermal decomposition of manganese(II) oxalate dehydrate. Thermochim Acta. 1993;215:47–63.

    Article  CAS  Google Scholar 

  41. Boonchom B. Kinetic and thermodynamic studies of MgHPO4·3H2O by non-isothermal decomposition data. J Therm Anal Calorim. 2009;98:863–71.

    Article  CAS  Google Scholar 

  42. Vlaev LT, Georgieva VG, Genieva SD. Products and kinetics of non-isothermal decomposition of vanadium(IV) oxide compounds. J Therm Anal Calorim. 2007;88:812–5.

    Article  Google Scholar 

  43. Vlaev LT, Nikolova MM, Gospodinov GG. Non-isothermal kinetics of dehydration of some selenite hexahydrates. J Solid State Chem. 2004;177:2663–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Innovation Project of Guangxi Graduate Education (YCSZ2013004), the Research and Development Foundation of Guangxi Engineering Academy for Calcium Carbonate Industry, Co., Ltd. (No. 201406), the Guangxi Scientific Foundation of China (Grant Nos. 2012GXNSFAA053019 and 0991108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sen Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Huang, Y., Li, Y. et al. LaPO4: Ce, Tb, Yb phosphor—synthesis and kinetics study for thermal process of precursor by Vyazovkin, OFW, KAS, Starink, and Mastplosts methods. J Therm Anal Calorim 120, 1635–1643 (2015). https://doi.org/10.1007/s10973-015-4548-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4548-6

Keywords

Navigation