Skip to main content
Log in

Thermal analysis of ammonium nitrate and basic copper(II) nitrate mixtures

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Basic copper nitrate [Cu(NO3)2·3Cu(OH)2, BCN] is a widely used oxidizer for gas-generating compounds. The oxidizers that replace some BCN with ammonium nitrate (NH4NO3, AN) have been investigated to increase the performance of the gas-generating agents. The purpose of this study was to understand the thermal behavior and stability of AN/BCN mixtures. To this end, mixtures prepared by two kinds of methods, with and without heat treatment, were analyzed by X-ray powder diffraction to investigate composition of samples, and differential scanning calorimetry and thermogravimetry–differential thermal analysis with mass spectrometry (TG–DTA–MS) to investigate the thermal behavior and evolved gases. It was found that [Cu(NH3)2](NO3)2 was formed in the sample with thermal treatment. The samples with and without heating exhibited different decomposition processes. It is considered that the residual AN and the amount of [Cu(NH3)2](NO3)2 in the mixture affected the decomposition behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mei X, Cheng Y, Li Y, Zhu X, Yan S, Li X. Thermal decomposition properties of guanidine nitrate and basic curip nitrate. J Therm Anal Calorim. 2013;111:131–5.

    Article  Google Scholar 

  2. Bucerius KM, Schmid HM. US Patent 5,542,999; 1996.

  3. Barnes MW, Taylor RD, Hock C. US Patent 5,635,668; 1997.

  4. Barnes MW, Taylor RD. US Patent 5,608,183. 1997;03:04.

  5. Taylor RD, Mendenhall IV. Burn rate enhancement of basic copper nitrate-containing gas generant compositions: U. S. Patent 7,998,292 B2. 2011;08:16.

  6. L’vov BV, Novichikhin AV. Mechanism of thermal decomposition of hydrated copper nitrate in vacuo. Spectrochim Acta B. 1995;50:1459–68.

    Article  Google Scholar 

  7. Ghose J, Kanungo A. Studies on the thermal decomposition of Cu(NO3)2·3H2O. J Therm Anal. 1981;20:459–62.

    Article  CAS  Google Scholar 

  8. Badica P, Aldica G, Crisan A. Decomposition of Ca:Cu = 1:1 nitrate powder. Thermal analysis and structural studies. J Mater Sci. 2002;37:585–94.

    Article  CAS  Google Scholar 

  9. Ryu SK, Lee WK, Park SJ. Thermal decomposition of hydrated copper nitrate [Cu(NO3)2·3H2O] on activated carbon fibers. Carbon Sci. 2004;5:180–5.

    Google Scholar 

  10. Ilcheva L, Maneva M, Bozadziev P. Thermal investigation of the basic copper (II) nitrate Cu(OH)1.5(NO3)0.5. J Therm Anal. 1979;16:205–7.

    Article  CAS  Google Scholar 

  11. Bottaro JC, Penwell PE, Schmitt RJ. 1,1,3,3-tetraoxo-1,2,3-triazapropene anion, a new oxy anion of nitrogen: the dinitramide anion and its salts. J Am Chem Soc. 1997;119:9405–10.

    Article  CAS  Google Scholar 

  12. Pak Z. Some ways to higher environmental safety of solid rocket propellant application. In: Proc AIAA/SAE/ASME/ASEE 29th joint propulsion conf exhibition. Monterey; 1993.

  13. Östmark H, Bemm U, Langlet A, Sanden R, Wingborg N. The properties of ammonium dinitramide (ADN): part 1, basic properties and spectroscopic data. J Energ Mater. 2000;18:123–8.

    Article  Google Scholar 

  14. Oommen C, Jain SR. Ammonium nitrate: a promising rocket propellant oxidizer. J Hazard Mater. 1999;67:253–81.

    Article  CAS  Google Scholar 

  15. Oxley JC, Smith JL, Rogers E, Yu M. Ammonium nitrate: thermal stability and explosivity modifiers. Thermochim Acta. 2002;384:23–45.

    Article  CAS  Google Scholar 

  16. Oxley JC, Smith JL, Zheng W, Rogers E, Coburn MD. Thermal decomposition studies on ammonium dinitramide (ADN) and 15N and 2H isotopomers. J Phys Chem A. 1997;101:5642–52.

    Google Scholar 

  17. Sinditskii VP, Egorshev Y, Levshenkov AI, Serushkin VV. Combustion of ammonium dinitramide, part 1: burning behavior. J Propul Power. 2006;22:769–76.

    Article  Google Scholar 

  18. Matsunaga H, Yoshino S, Kumasaki M, Habu H, Miyake A. Aging characteristics of the energetic oxidizer ammonium dinitramide. Sci Tech Energ Mater. 2011;72:131–5.

    CAS  Google Scholar 

  19. Matsunaga H, Habu H, Miyake A. Influences of aging on thermal decomposition mechanism of high performance oxidizer ammonium dinitramide. J Therm Anal Calorim. 2013;113:1387–94.

    Article  CAS  Google Scholar 

  20. Matsunaga H, Habu H, Miyake A. Thermal behavior of new oxidizer ammonium dinitramide. J Therm Anal Calorim. 2013;111:1183–8.

    Article  CAS  Google Scholar 

  21. Matsunaga H, Habu H, Miyake A. Thermal decomposition of the high-performance oxidizer ammonium dinitramide under pressure. J Therm Anal Calorim. 2014;116:1227–32.

    Article  CAS  Google Scholar 

  22. Fujisato K, Habu H, Hori K. Condensed phase behavior in the combustion of ammonium dinitramide. Propellant Explos Pyrotech. 2014;39:714–22.

  23. Fujisato K, Habu H, Hori K. Role of additives in the combustion of ammonium dinitramide. Propellant Explos Pyrotech. 2014;39:518–22.

    Article  CAS  Google Scholar 

  24. Sugie Y, Miyake A. Effects of temperature on nitration of sulfamates. J Therm Anal Calorim. 2014;116:1213–7.

    Article  CAS  Google Scholar 

  25. Sinditskii VP, Egorshev VY, Levshenkov AI, Serushkin VV. Ammonium nitrate: combustion mechanism and the role of additives. Propellant Explos Pyrotech. 2005;30:269–80.

    Article  CAS  Google Scholar 

  26. Wada Y, Arai M. A study on ammonium nitrate-metal nitrate double salts as oxidizers for gas generating agent. Sci Tech Energ Mater. 2010;71:39–43.

    CAS  Google Scholar 

  27. Miyata Y, Hasue K. Burning characteristics of aminoguanidinium 5,5′-Azobis- 1H tetrazolate/ammonium nitrate mixture-effects of particle size and composition ratio on burning rate. J Energ Mater. 2011;29:344–59.

    Article  CAS  Google Scholar 

  28. Kohga M, Okamoto K. Thermal decomposition behaviors and burning characteristics of ammonium nitrate/polytetrahydrofuran/glycerin composite propellant. Combust Flame. 2011;158(578–82):15.

    Google Scholar 

  29. Nakamura H, Saeki K, Akiyoshi M, Takahasi K. The reaction of ammonium nitrate with carbon powder. Kayaku Gakkaishi. 2002;63:87–93 (In Japanese).

    CAS  Google Scholar 

  30. Pandey M, Jha S, Kumar R, Mishra S, Jha RR. The pressure effect study on the burning rate of ammonium nitrate-HTPB-based propellant with the influence catalysts. J Therm Anal Calorim. 2012;107:135–40.

    Article  CAS  Google Scholar 

  31. Golovina N, Nechiporenko G. Ammonium nitrate phase state stabilization with small amounts of some organic compounds. Cent Eur J Energ Mater. 2009;6:45–56.

    CAS  Google Scholar 

  32. Golovina N, Nechiporenko G. Phase state stabilization of ammonium nitrate for creating an oxidizing agent for smokeless gas-generating formulations yielding no toxic combustion products. Russ J Appl Chem. 2007;80:24–30.

    Article  CAS  Google Scholar 

  33. Vorozhtsov A, Archipov V, Bondarchuk S, Popok N, Klyakin G, Babuk V, Luca LTD, Galfetti L. Ballistic characteristics of solid propellants containing dual oxidizer. In: Proc 1st Europ Conf. Aerospace Sci Moscow; 2005.

  34. Sudhakar AOR. Mathew S. Thermal behavior of CuO doped phase-stabilised ammonium nitrate. Thermochim Acta. 2006;451:5–9.

    Article  CAS  Google Scholar 

  35. Kajiyama K, Izato Y, Miyake A. Thermal characterristics of ammonium nitrate, carbon, and copper (II) oxide mixtures. J Therm Anal Calorim. 2013;113:1475–85.

    Article  CAS  Google Scholar 

  36. Izato Y, Miyake A, Date S. Combustion characteristics of ammonium nitrate and carbon mixtures based on a thermal decomposition mechanism. Propellant Explos Pyrotech. 2013;38:129–35.

    Article  CAS  Google Scholar 

  37. Izato Y, Kajiyama K, Miyake A. Thermal decomposition mechanism of ammonium nitrate and copper(II) oxide mixtures. Sci Tech Energ Mater. 2014;75:128–33.

    Google Scholar 

  38. Nagayama S, Katoh K, Higashi E, Nakano K, Kumagae K, Habu H, Wada Y, Arai M. Differential scanning calorimetry analysis of crystal structure transformation in spray-dried particles consisting of ammonium nitrate, potassium nitrate, and a polymer. J Therm Anal Calorim. 2014;118:1215–19.

  39. Nagayama S, Katoh K, Higashi E, Nakano K, Habu H. Effect of polymer addition amount and type on thermal decomposition behavior of spray-dried particles comprising ammonium nitrate, potassium nitrate, and polymer. J Therm Anal Calorim. 2014;118:1221–27.

  40. Wada Y, Hori K, Arai M. Combustion mechanism of mixtures of guanidine nitrate, ammonium nitrate, and basic copper nitrate. Sci Technol Energ Mater. 2010;71:83–7.

    CAS  Google Scholar 

  41. Dyukarev SS, Morozov IV, Reshetova LN, Guz OV, Arkhangel’skii IV, Korenve YM, Spiridonov FM. Copper(II) nitrate ammoniates Cu(NH3)4(NO3)2 and Cu(NH3)2(NO3)2 and their thermolysis under reduced pressure. Russ J Inorg Chem. 1999;44:883–8.

    Google Scholar 

  42. Southern TM, Wendlandt WW. The thermal decomposition of metal complexes—XX: some amine copper(II) nitrate complexes. J Inorg Nucl Chem. 1970;32:3783–92.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsumi Miyake.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiota, K., Matsunaga, H. & Miyake, A. Thermal analysis of ammonium nitrate and basic copper(II) nitrate mixtures. J Therm Anal Calorim 121, 281–286 (2015). https://doi.org/10.1007/s10973-015-4536-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4536-x

Keywords

Navigation