Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 121, Issue 1, pp 389–395 | Cite as

Photocuring and thermal post-curing of a cycloaliphatic epoxide resin with a trithiol and a vinyl epoxy compound

  • J. M. Morancho
  • X. Fernández-Francos
  • X. Ramis
  • J. M. Salla
  • À. Serra
Article

Abstract

In this work, the influence of trimethylolpropane tris-(3-mercaptopropionate) and a vinyl epoxy compound (4-vinyl-1-cyclohexene 1,2-epoxide) over the photocuring and subsequent thermal curing of an epoxy resin (CYRACURE UVR-6105) is studied. The photoinitiator used is CYRACURE UVI-6976. The techniques used in this study have been DSC (differential scanning calorimetry) and FTIR (Fourier transform infrared spectroscopy). In the isothermal photocuring, when the proportion of the modifiers are 5 % or greater, the photopolymerization of the epoxy resin is stopped by the thiol-ene reaction of both modifiers, due to the formation of alkyl sulfonium salts, decreasing the maximum degree of conversion of the process. After the photocuring process, the different systems studied have been post-cured thermally and the activation energy of this process has been determined using a differential isoconversional method. When the epoxy resin is neat or only it has been added 2.5 % of the modifiers, at the beginning of the post-curing the activation energy decreases, but when the proportion of the modifiers is 5 % or greater, the activation energy always increases.

Keywords

Epoxy networks Thiol-ene Photocuring Thermal curing Kinetics 

Notes

Acknowledgements

The authors would like to thank MICINN (Ministerio de Ciencia e Innovación) and FEDER (Fondo Europeo de Desarrollo Regional) (MAT2011-27039-C03-01 and MAT2011-27039-C03-02 and contract JCI-2010-06187) and to the Comissionat per a Universitats i Recerca del DIUE de la Generalitat de Catalunya (2014-SGR-67).

References

  1. 1.
    Riew CK, Siebert AR, Smith RW, Fernando M, Kinloch AJ. Toughened epoxy resins: performed particles as tougheners for adhesives and matrices. In: Riew CK, Kinloch AJ, editors. Toughened plastics II novel approaches in science and engineering. Advances in chemical series, vol. 252. Washington: American Chemical Society; 1996. p. 33–44.CrossRefGoogle Scholar
  2. 2.
    Saiki N, Yamazaki O, Ebe K. UV/heat dual-curable adhesive tapes for fabricating stacked packages of semiconductors. J Appl Polym Sci. 2008;108:1178–83.CrossRefGoogle Scholar
  3. 3.
    Kang B-U. Interfacial fracture behavior of epoxy adhesives for electronic components. J Korea Acad Ind Cooper Soc. 2011;12:1479–87.Google Scholar
  4. 4.
    Tech Tip 20. B-stage epoxy. In: Epo-tek tech tips. Epoxy technology. 2012. http://www.epotek.com/site/files/Techtips/pdfs/tip20.pdf. Accessed 21 July 2014.
  5. 5.
    Studer K, Decker C, Beck E, Schwalm R. Thermal and photochemical curing of isocyanate and acrylate functionalized oligomers. Eur Polym J. 2005;41:157–67.CrossRefGoogle Scholar
  6. 6.
    Decker C, Masson F, Schwalm R. Dual-curing of waterborne urethane-acrylate coatings by UV and thermal processing. Macromol Mater Eng. 2003;288:17–28.CrossRefGoogle Scholar
  7. 7.
    Kropp M, Behr A. UV B-stage technology provides process & performance advantages. In: Innovations in IC packaging adhesives. Solid state technology. 2005. http://electroiq.com/blog/2005/08/innovations-in-ic-packaging/adhesives/. Accessed 21 July 2014.
  8. 8.
    Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed. 2001;40:2004–21.CrossRefGoogle Scholar
  9. 9.
    Hoyle CE, Bowman CN. Thiol-ene click chemistry. Angew Chem Int Ed. 2010;49:1540–73.CrossRefGoogle Scholar
  10. 10.
    Cramer NB, Couch CL, Schreck KM, Carioscia JA, Boulden JE, Stansbury JW, Bowman CN. Investigation of thiol-ene and thiol-ene-methacrylate based resins as dental restorative materials. Dent Mater. 2010;26:21–8.CrossRefGoogle Scholar
  11. 11.
    Trey SM, Gamstedt EK, Mäder E, Jönsson S, Johansson M. Glass fiber reinforced high glass transition temperature thiol-ene networks. Compos Part A Appl Sci Manuf. 2011;42:1800–8.CrossRefGoogle Scholar
  12. 12.
    Sangermano M, Cerrone M, Colucci G, Roppolo I, Acosta Ortiz R. Preparation and characterization of hybrid thiol-ene/epoxy UV-thermal dual-cured systems. Polym Int. 2010;59:1046–51.Google Scholar
  13. 13.
    Acosta Ortiz R, Puente Urbina BA, Cabello Valdez LV, Berlanga Duarte L, Guerrero Santos R, García Valdez AE, Soucek MD. Effect of introducing a cationic system into a thiol-ene photopolymerizable formulation. J Polym Sci, Part A: Polym Chem. 2007;45:4829–43.CrossRefGoogle Scholar
  14. 14.
    Cramer NB, Davies T, O’Brien AK, Bowman CN. Mechanism and modeling of a thiol-ene photopolymerization. Macromolecules. 2003;36:4631–6.CrossRefGoogle Scholar
  15. 15.
    Cramer NB, Scott JP, Bowman CN. Photopolymerizations of thiol-ene polymers without photoinitiators. Macromolecules. 2002;35:5361–5.CrossRefGoogle Scholar
  16. 16.
    Crivello JV. The discovery and development of onium salt cationic photoinitiators. J Polym Sci, Part A: Polym Chem. 1999;37:4241–54.CrossRefGoogle Scholar
  17. 17.
    Flores J, Tomuta AM, Fernández-Francos X, Ramis X, Sangermano M, Serra A. A new two-stage curing system: thiol-ene/epoxy homopolymerization using an allyl terminated hyperbranched polyester as reactive modifier. Polymer. 2013;54:5473–81.CrossRefGoogle Scholar
  18. 18.
    Foix D, Ramis X, Serra A, Sangermano M. UV generation of a multifunctional hyperbranched thermal crosslinker to cure epoxy resins. Polymer. 2011;52:3269–76.CrossRefGoogle Scholar
  19. 19.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Therm Acta. 2011;520:1–19.CrossRefGoogle Scholar
  20. 20.
    Morancho JM, Cadenato A, Ramis X, Morell M, Fernández-Francos X, Salla JM, Serra A. Thermal curing and photocuring of a DGEBA modified with multiarm star poly(glycidol)-b-poly(ε-caprolactone) polymers of different arm lengths. J Therm Anal Calorim. 2013;114:409–16.CrossRefGoogle Scholar
  21. 21.
    Voytekunas VY, Ng FL, Abadie MJM. Kinetics study of the UV-initiated cationic polymerization of cycloaliphatic diepoxide resins. Eur Polym J. 2008;44:3640–9.CrossRefGoogle Scholar
  22. 22.
    Lovell LG, Newman SM, Bowman CN. The effects of light intensity, temperature and comonomer composition on the polymerization behavior of dimethacrylate dental resins. J Dent Res. 1999;78:1469–76.CrossRefGoogle Scholar
  23. 23.
    Lecamp L, Youssef B, Bunel C, Lebaudy P. Photoinitiated polymerization of a dimethacrylate oligomer: 2. Kinetic studies. Polymer. 1999;40:1403–9.CrossRefGoogle Scholar
  24. 24.
    Scott TF, Cook WD, Forsythe JS. Photo-DSC cure kinetics of vinyl ester resins. I. Influence of temperature. Polymer. 2002;43:5839–45.CrossRefGoogle Scholar
  25. 25.
    Van Assche G, Swier S, Van Mele B. Modeling and experimental verification of the kinetics of reacting polymer systems. Therm Acta. 2002;388:327–41.CrossRefGoogle Scholar
  26. 26.
    Santiago D, Fernández-Francos X, Ramis X, Salla JM, Sangermano M. Comparative curing kinetics and thermal-mechanical properties of DGEBA thermosets cured with a hyperbranched poly(ethyleneimine) and an aliphatic triamine. Therm Acta. 2011;526:9–21.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • J. M. Morancho
    • 1
  • X. Fernández-Francos
    • 2
    • 3
  • X. Ramis
    • 1
  • J. M. Salla
    • 1
  • À. Serra
    • 3
  1. 1.Thermodynamics Laboratory, Heat Engines Department, ETSEIBUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Centre Tecnològic de la Química de CatalunyaTarragonaSpain
  3. 3.Department of Analytical and Organic ChemistryUniversitat Rovira i VirgiliTarragonaSpain

Personalised recommendations