Journal of Thermal Analysis and Calorimetry

, Volume 121, Issue 2, pp 843–853 | Cite as

Glass-forming ability and thermal stability of F-phlogopite-based glasses

  • R. Casasola
  • J. M. Pérez
  • M. RomeroEmail author


This paper presents the results of a study that analyses the effect of fluorine content on glass-forming ability (GFA), glass stability (GS) and preferred crystallisation mechanism for a series of glasses in the SiO2–Al2O3–MgO–K2O–F system. Three glass compositions, with fluorine contents ranging from 4.50 to 5.70 mass%, were investigated by differential scanning calorimetry (DSC). The GS was established by estimating different parameters derived from characteristic temperatures of non-isothermal DSC curves, namely, the working range (ΔT TS), reduced glass transition temperature (T gr), Weinberg (K w), Hrubÿ (K H) and Lu-Liu (K LL) parameters. The prevalent crystallisation mechanism for each glass was assessed by determining the dissimilarity in crystallisation temperature (ΔT p) between fine (<63 µm powder) and coarse glass samples. The estimation of GFA was based on the critical cooling rate (q c), which is determined from the Weinberg, Hrubÿ and Lu-Liu parameters. The results point out that the compositions of these glasses result in melts with a high tendency to crystallise during cooling (q c > 120 °C min−1) and obtaining amorphous glasses is only possible by fast cooling of the melt. In a subsequent thermal treatment, a volume crystallisation mechanism will be prevalent in the process of devitrification of these F-phlogopite-based glasses. Nevertheless, the increasing on the fluorine content in the glass composition leads to a variation in the location of the first developed crystals from the internal volume of the glass particle to surface sites. The results established by DSC analyses are verified by the results obtained from field emission scanning electron microscopy and X-ray diffraction.


F-phlogopite DSC Hrubÿ, Weinberg Lu-Liu Glass-forming ability Crystallisation mechanism 



The authors would like to acknowledge Mrs. P. Díaz for her technical support in the experimental study. R. Casasola and J. M. Pérez express their gratitude to the Spanish National Research Council (CSIC) for their contract through the JAE Program (JAEPre-08-00456 and JAEDoc-08-00362, respectively), which is co-financed by the European Social Fund. The financial support through the projects MAT 2006-05977 and MAT2013-40477-P is also recognised.


  1. 1.
    Deer WA, Howie RA, Zussman J. An introduction to rock-forming minerals. 2nd ed. London: Pearson Education Ltd.; 1996.Google Scholar
  2. 2.
    Faeghi Nia A. Thermochim Acta. 2013;564:1.CrossRefGoogle Scholar
  3. 3.
    Faeghi Nia A. Glass Phys Chem. 2014;40:215.CrossRefGoogle Scholar
  4. 4.
    Faeghi-Nia A, Ebadzadeh T. Ceram Int. 2012;38:2653.CrossRefGoogle Scholar
  5. 5.
    Ghasemzadeh M, Nemati A. Bull Mater Sci. 2012;35:853.CrossRefGoogle Scholar
  6. 6.
    Khalkhali Z, Hamnabard Z, Yekta B, Nasiri M, Khatibi E. J Mater Eng Perform. 2013;22:528.CrossRefGoogle Scholar
  7. 7.
    Baik DS, No KS, Chun JS. J Mater Sci. 1995;30:1801.CrossRefGoogle Scholar
  8. 8.
    Grossman DG. J Am Ceram Soc. 1972;55:446.CrossRefGoogle Scholar
  9. 9.
    Baik DS, No KS, Chun JS, Cho HY. J Mater Process Technol. 1997;67:504.CrossRefGoogle Scholar
  10. 10.
    KhatibZadeha S, Samedanib M, Eftekhari Yektab B, Hasheminiac S. J Mater Process Technol. 2008;203:113.CrossRefGoogle Scholar
  11. 11.
    Faeghi-Nia A, Marghussian VK, Taheri-Nassaj E, Pascual MJ, Durán A. J Am Ceram Soc. 2009;92:1514.CrossRefGoogle Scholar
  12. 12.
    Alizadeh P, EftekhariYekta B, Javadi T. Adv Appl Ceram. 2010;109:56.CrossRefGoogle Scholar
  13. 13.
    Chyung K, Dawes SB. Mater Sci Eng, A. 1993;62:27.CrossRefGoogle Scholar
  14. 14.
    Casasola R, Rincón JMa, Romero M. J Mater Sci. 2012;47:553.CrossRefGoogle Scholar
  15. 15.
    Romero M, Rincón JMa, Acosta A. J Am Ceram Soc. 2004;87:819.CrossRefGoogle Scholar
  16. 16.
    Abo-Mosallam HA, Salama SN, Salman SM. Ceram Int. 2014;40:8037.CrossRefGoogle Scholar
  17. 17.
    Lendvayova S, Moricova K, Jona E, Uherkova S, Kraxner J, Pavlik V, Durny R, Mojumdar SC. J Therm Anal Calorim. 2013;112:1133.CrossRefGoogle Scholar
  18. 18.
    Reben M, Sroda M. J Therm Anal Calorim. 2013;113:77.CrossRefGoogle Scholar
  19. 19.
    Heireche MM, Belhadji M, Hakiki NE. J Therm Anal Calorim. 2013;114:195.CrossRefGoogle Scholar
  20. 20.
    Sharda S, Sharma S, Sharma P, Sharma V. J Therm Anal Calorim. 2014;115:361.CrossRefGoogle Scholar
  21. 21.
    Svoboda R. J Therm Anal Calorim. 2014;118:1721.CrossRefGoogle Scholar
  22. 22.
    Thakur RL, Thiagarajan S. Cent Glass Ceram Res Inst Bull. 1966;13:33.Google Scholar
  23. 23.
    Donald IW, Metclafe BL, Gerrard LA, Fong SK. J Non-Cryst Solid. 2008;354:301.CrossRefGoogle Scholar
  24. 24.
    Turnbull D. Contemp Phys. 1969;10:473.CrossRefGoogle Scholar
  25. 25.
    Weinberg MC. Phys Chem Glasses. 1994;35:119.Google Scholar
  26. 26.
    Hrubÿ A. Czech Phys B. 1972;22:1187.CrossRefGoogle Scholar
  27. 27.
    Lu ZP, Liu CT. Acta Mater. 2002;50:3501.CrossRefGoogle Scholar
  28. 28.
    Lu ZP, Liu CT. Phys Rev Lett. 2003;91:115505.CrossRefGoogle Scholar
  29. 29.
    Nascimento MLF, Souza LA, Ferreira EB, Zanotto E. J Non-Cryst Solid. 2005;351:3296.CrossRefGoogle Scholar
  30. 30.
    Nascimento MLF, Dantas NO. Mater Lett. 2007;61:912.CrossRefGoogle Scholar
  31. 31.
    Davies HA. Phys Chem Glasses. 1976;17:159.Google Scholar
  32. 32.
    Lewis MH. Glasses and glass–ceramics, Chapter 3. London: Chapman and Hall; 1989.Google Scholar
  33. 33.
    Zanotto ED. J Non-Cryst Solids. 1987;89:361.CrossRefGoogle Scholar
  34. 34.
    Zanotto ED, Weinberg MC. Phys Chem Glasses. 1989;30:186.Google Scholar
  35. 35.
    Donald IW, Metclafe BL, Gerrard LA, Fong SK. J Non-Cryst Solid. 2006;352:2993.CrossRefGoogle Scholar
  36. 36.
    Velez M, Smith J, Moore RE. Cerâmica. 1997;43:180.CrossRefGoogle Scholar
  37. 37.
    Likitvanichkul S, Lacourse WC. J Mater Sci. 1995;30:6151.CrossRefGoogle Scholar
  38. 38.
    Casasola R, Pérez JM, Romero M. J Non-Cryst Solids. 2013;378:25.CrossRefGoogle Scholar
  39. 39.
    Radonjić LJ, Nikolić LJ. J Eur Ceram Soc. 1994;7:11.CrossRefGoogle Scholar
  40. 40.
    Maiti PK, Mallik A, Basumajumdar A, Kundu P. Ceram Int. 2010;35:301.Google Scholar
  41. 41.
    Omar AA, Hamzawy EMA, Farag MM. Ceram Int. 2009;36:115.Google Scholar
  42. 42.
    Stamboulis A, Hill RG, Law RV. J Non-Cryst Solids. 2004;333:101.CrossRefGoogle Scholar
  43. 43.
    Brauer DS, Hill RG, O’Donnell MD. Phys Chem Glasses Eur J Glass Sci Technol B. 2012;53:27.Google Scholar
  44. 44.
    Donald IW, Metclafe BL, Gerrard LA, Fong SK. J Non-Cryst Solid. 2008;354:301.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.Group of Glass and Ceramic Materials, Instituto de Ciencias de la Construcción Eduardo TorrojaCSICMadridSpain

Personalised recommendations