Skip to main content

Thermal degradation of phosphorus esters derived from isosorbide and 10-undecenoic acid

Abstract

Phosphorus compounds derived from renewable biomaterials are of increasing interest as polymer additives. These compounds may have both a plasticizing and flame-retarding effect on a polymer matrix into which they are incorporated. The thermal degradation of a series of phosphorus esters derived from a diol generated by the esterification of isosorbide (from starch) with 10-undecenoic acid (from castor oil) followed by thiol-ene reaction with 2-hydroxyethanethiol has been examined using thermogravimetry and infrared spectroscopy. All the esters undergo degradation over the temperature range of 250–310 °C to generate a substantial residual char. Infrared analysis of samples undergoing degradation suggests that a prominent reaction is elimination of a phosphorus acid.

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Scheme 5
Fig. 4
Fig. 5
Fig. 6
Scheme 6
Scheme 7
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 8
Fig. 11
Fig. 12
Scheme 9

References

  1. Reddy MR, Vivekanandhan S, Misra M, Bhatia SK, Mohanty AK. Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci. 2013;38:1653–89.

    CAS  Article  Google Scholar 

  2. Malinconico M, Cerruti P, Santagata G, Immirzi B. Natural polymers and additives in commodity and specialty applications: a challenge for the chemistry of the future. Macromol Symp. 2014;337:124–33.

    CAS  Article  Google Scholar 

  3. Soroudi A, Jakubowicz I. Recycling of bioplastics, their blends and biocomposites: a review. Eur Polym J. 2013;49:2839–58.

    CAS  Article  Google Scholar 

  4. Doppalapudi S, Jain A, Khan W, Domb AJ. Biodegradable polymers—an overview. Polym Adv Technol. 2014;25:427–35.

    CAS  Article  Google Scholar 

  5. Chen GQ, Patel MK. Plastics derived from biological sources: present and future: a technical and environmental review. Chem Rev. 2012;112:2082–99.

    CAS  Article  Google Scholar 

  6. Tschan MJL, Brule E, Hapquette P, Thomas CM. Synthesis of biodegradable polymers from renewable resources. Polym Chem. 2012;3:836–51.

    CAS  Article  Google Scholar 

  7. Shen L, Haufe J, Patel MK. Product overview and market projection of emerging bio-based plastics, PRO-BIP 2009. Utrecht: Utrecht University; 2009.

    Google Scholar 

  8. van der Veen I, de Boer J. Phosphorous flame retardants: properties, production, environmental occurrence, toxicity and analysis. Chemosphere. 2012;88:1119–53.

    Article  Google Scholar 

  9. Morris PJ, Medina-Cleghorn D, Heslin A, King SM, Orr J, Mulvihill MM, Krauss RM, Nomura DK. Organophosphorus flame retardants inhibit specific liver carboxylesterases and cause serum hypertriglyceridemia. ACS Chem Biol. 2014;. doi:10.1021/cb500014r.

    Google Scholar 

  10. Eede N, Neels H, Jorens PG, Covaci A. Analysis of organophosphate flame retardant diester metabolites in human urine by liquid chromatography electrospray ionization tandem mass spectrometry. J Chromatogr A. 2013;1303:48–53.

    Article  Google Scholar 

  11. Meeker JD, Stapleton HM. House dust concentrations of organophosphate flame retardants in relation to hormone levels and semen quality parameters. Environ Health Perspect. 2010;118:318–23.

    CAS  Article  Google Scholar 

  12. Salamova A, Ma Y, Venier M, Hites RA. High levels of organophosphate flame retardants in the Great Lakes atmosphere. Environ Sci Technol Lett. 2014;1:8–14.

    CAS  Article  Google Scholar 

  13. Howell BA, Dangalle H. Phosphorus-containing tartrates and hydroquinones as flame retardant precursors. In: Proceedings, 39th annual technical meeting of the North American Thermal Analysis Society. 2011.

  14. Alace M, Wenning RJ. The significance of brominated flame retardants in the environment: current understanding, issues and challenges. Chemosphere. 2002;46:579–82.

    Article  Google Scholar 

  15. Darnerud PD. Brominated flame retardants as possible endocrine disrupters. Int J Androl. 2008;31:152.

    CAS  Article  Google Scholar 

  16. Herbstmann JB, Sjödin A, Kurzon M, Lederman SA, Jones RS, Rauh V, Needham LL, Tang D, Nieazwiecki M, Wang RY, Perera F. Prenatal exposure to PBDEs and neurodevelopment. Envrion Health Perspect. 2010;118:712–9.

    Article  Google Scholar 

  17. Hess G. Industry drops flame retardant. Chem Eng News. 2010;88(1):10.

    Article  Google Scholar 

  18. Narayan S, Moore M. Flame retardants—a new, versatile flame retardant for olefinic and styrenic polymers. Popul Plast Packag. 2012;75(3):58–60.

    Google Scholar 

  19. Daniel YC, Howell BA. Isosorbide as a renewable biosource for phosphorus-based flame retardants. In: Proceedings, 2012 IUPAC World Polymer Congress. 2012.

  20. Feng X, East AJ, Hammond WB, Zhang Y, Jaffe M. Overview of advances in sugar-based polymers. Polym Adv Technol. 2011;22:139–50.

    CAS  Article  Google Scholar 

  21. Rose M, Palkovits R. Isosorbide as a renewable platform chemical for versatile applications—quo vadis? ChemSusChem. 2012;5:167–76.

    CAS  Article  Google Scholar 

  22. Fenouillot F, Rosseau A, Colomines G, Saint-Loup R, Pascault JP. Polymers from renewable 1,4;1,6-dianhydrohexitols (isosorbide, isomannide and isoiodide): a review. Prog Polym Sci. 2010;25:578–622.

    Article  Google Scholar 

  23. von der Steen M, Stevens CV. Undecylenic acid: a valuable and physiologically active renewable building block from castor oil. ChemSusChem. 2009;2:692–713.

    Article  Google Scholar 

  24. de Espinosa LM, Meier MAK. Plant oils: The perfect renewable resource for polymer science?! Eur Polym J. 2011;47:837–52.

    Article  Google Scholar 

  25. Biermann U, Bornscheurer U, Meier MAR, Metzger JO, Schafer HJ. Oils and fats as renewable raw materials in chemistry. Angew Chem Int Ed. 2011;50:3854–71.

    CAS  Article  Google Scholar 

  26. Gilbert EE. The unique chemistry of castor oil. J Chem Educ. 1941;18:338.

    CAS  Article  Google Scholar 

  27. Atabani AE, Silitonga AS, Ong HC, Mahlia TMI, Masjuki HH, Badruddin IA, Fayaz H. Non-edible vegetable oils: a critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renew Sustain Energy Rev. 2013;18:211–45.

    CAS  Article  Google Scholar 

  28. Howell BA, Carter KE, Dangalle H. Flame retardants based on tartaric acid: a renewable by-product of the wine industry. In: Payne GF, Smith PB, editors. Renewable and sustainable polymers (ACS symposium series 1063), American Chemical Society, Washington, 2011, Ch. 9, p. 133–152.

  29. Lowe AB. Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polym Chem. 2010;1:17–36.

    CAS  Article  Google Scholar 

  30. Grigor BB, James AK, Girma B, Moon GH. Free radical addition of butanethiol to vegetable oil double bonds. J Agric Food Chem. 2009;57:1282–90.

    Article  Google Scholar 

  31. Maisonneuve L, Lebarb T, Nga Nguyen TH, Cloutlet E, Gadenne B, Alfos C, Cramail H. Hydroxyl telechelic building blocks from fatty acid methyl esters for the synthesis of poly(ester/amide urethane)s with versatile properties. Polym Chem. 2012;3:2583.

    CAS  Article  Google Scholar 

  32. Dumitrascu A, Howell BA. Flame-retarding vinyl polymers using phosphorus-functionalized styrene monomers. Polym Degrad Stab. 2011;96:342–9.

    CAS  Article  Google Scholar 

  33. Thomas LC. Interpretation of the infrared spectra of organophosphorus compounds. London: Academic Press; 1974.

    Google Scholar 

  34. Thomas LC, Chittenden RA. Characteristic infrared absorption frequencies of organophosphorus compounds I. The phosphoryl group. Spectrochim Acta. 1964;20:467–87.

    CAS  Article  Google Scholar 

  35. Daasch LW, Smith DC. Infrared spectra of phosphorus compounds. Anal Chem. 1951;23:853–68.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Support of this work by Chemtura Corporation/Great Lakes Solutions is gratefully acknowledged. A sample of diphenyl chlorophosphate was graciously provided by ICL-IP America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Howell.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Howell, B.A., Daniel, Y.G. Thermal degradation of phosphorus esters derived from isosorbide and 10-undecenoic acid. J Therm Anal Calorim 121, 411–419 (2015). https://doi.org/10.1007/s10973-015-4487-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4487-2

Keywords

  • Renewables
  • Sustainability
  • Flame retardants
  • Biobased polymer additives
  • Ester pyrolysis