Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 120, Issue 1, pp 189–199 | Cite as

Thermally evolved gases from thiourea complexes of CuCl in air

Detailed comparisons by TG-FTIR and TG/DTA-MS for compounds poor and rich in thiourea
  • János MadarászEmail author
  • Malle Krunks
  • Lauri NiinistöEmail author
  • György Pokol
Article

Abstract

Detailed identification and monitoring of gaseous species released during thermal decomposition of two thiourea (tu) complexes of CuCl, one of them, Cu(tu)Cl 1/2H2O (1) poor, while the other, Cu(tu)3Cl (2) rich in thiourea, have been carried out in flowing air atmosphere up to 800 °C by both coupled TG-EGA-FTIR and simultaneous TG/DTA-EGA-MS. The thermal decomposition of 1, prepared actually from CuCl, has shown evolution of similar gas mixture and dynamics by TG/DTA-MS, as had been measured with TG-FTIR and published earlier, except that no evolution of ammonia has been detected, at all. Probably, the intense co-evolution of acidic vapors (HCl and SO2) has prevented NH3 to reach the ionization chamber of the mass spectrometer. While in case of anhydrous 2, Cu(tu)3Cl rich in thiourea, between 180 and 240 °C, the main gaseous decomposition products are ammonia (NH3), carbon disulfide (CS2), and isothiocyanic acid (HNCS). At about 250 °C, gas-phase exothermic oxidation of CS2 and HNCS vapors occurs, resulting in a sudden release of sulfur dioxide (SO2), carbonyl sulfide (COS), and hydrogen cyanide (HCN). Also a definite evolution of cyanamide (H2NCN) is observed just above 250 °C. Between 350 and 500 °C, a more intense oxidation process of both organic condensed residues and copper(I) sulfides into copper(II)-oxo-sulfates appears, which is also indicated by intense evolution of CO2, SO2, and H2NCN (and/or HNCO). Above 700 °C, the oxo-sulfates start to decompose resulting in repeated evolution of SO2. All species identified by FTIR gas cell have been also confirmed by mass spectrometry. Evolution of HCl from Cu(tu)3Cl (2) has been detected by either of the two EGA methods.

Keywords

Copper(I) chloride Thiourea Evolved gas analysis Simultaneous TG/DTA Coupled TG-EGA-FTIR Coupled TG/DTA-EGA-MS Spray pyrolysis Copper sulfides 

Notes

Acknowledgements

This study was partially supported by the Estonian Ministry of Education and Research (IUT194), Estonian Science Foundation (ETF9081) and European Regional Development Fund (Centre of Excellence TK114 “Mesosystems-Theory and Applications”).

References

  1. 1.
    Yadav AA, Masumdar EU. Photoelectrochemical investigations of cadmium sulphide (CdS) thin film electrodes prepared by spray pyrolysis. J Alloys Comp. 2011;509:5394–9.CrossRefGoogle Scholar
  2. 2.
    Lee YH, Im SH, Lee JH, Il Seok S. Porous CdS-sensitized electrochemical solar cells. Electrochim Acta. 2011;56:2087–91.CrossRefGoogle Scholar
  3. 3.
    Popescu V, Nascu HI, Darvasi E. Optical properties of PbS-CdS multilayers and mixed (CdS plus PbS) thin films deposited on glass substrate by spray pyrolysis. J Optoelectr Adv Mater. 2006;8:1187–93.Google Scholar
  4. 4.
    Krunks M, Mellikov E, Sork E. Formation of CdS films by spray pyrolysis. Thin Solid Films. 1986;145:105–9.CrossRefGoogle Scholar
  5. 5.
    Acosta DR, Magana CR, Martinez AI, Maldonado A. Structural evolution and optical characterization of indium doped cadmium sulfide thin films obtained by spray pyrolysis for different substrate temperatures. Sol Energy Mater Sol Cells. 2004;82:11–20.CrossRefGoogle Scholar
  6. 6.
    Krunks M, Mellikov E. Metal sulfide thin films by chemical spray pyrolysis. Opt Org Inorg Mater. 2001;4415:60–5.CrossRefGoogle Scholar
  7. 7.
    Kose S, Atay F, Bilgin V, Akyuz I, Ketenci E. Optical characterization and determination of carrier density of ultrasonically sprayed CdS:Cu films. Appl Surf Sci. 2010;256:4299–303 and refs therein.Google Scholar
  8. 8.
    Choy KL, Su B. Growth behavior and microstructure of CdS thin films deposited by an electrostatic spray assisted vapor deposition (ESAVD) process. Thin Solid Films. 2001;388:9–14.CrossRefGoogle Scholar
  9. 9.
    Su B, Choy KL. Microstructure and properties of the CdS thin films prepared by electrostatic spray assisted vapour deposition (ESAVD) method. Thin Solid Films. 2000;359:160–4.CrossRefGoogle Scholar
  10. 10.
    Tummala R, Guduru RK, Mohanty PS. Solution precursor plasma deposition of nanostructured CdS thin films. Mater Res Bull. 2012;47:700–7.CrossRefGoogle Scholar
  11. 11.
    Adelifard M, Eshghi H, Mohagheghi MMB. An investigation on substrate temperature and copper to sulphur molar ratios on optical and electrical properties of nanostructural CuS thin films prepared by spray pyrolysis method. Appl Surf Sci. 2012;258:5733–8.CrossRefGoogle Scholar
  12. 12.
    Madarász J, Okuya M, Kaneko S. Preparation of covellite and digenite thin films by an intermittent spray pyrolysis deposition method. J Eur Ceram Soc. 2001;21:2113–6.CrossRefGoogle Scholar
  13. 13.
    Nascu C, Pop I, Ionescu V, Indrea E, Bratu I. Spray pyrolysis deposition of CuS thin films. Mater Lett. 1997;32:73–7.CrossRefGoogle Scholar
  14. 14.
    Wang SY, Wang W, Lu ZH. Asynchronous-pulse ultrasonic spray pyrolysis deposition of CuxS (x = 1, 2) thin films. Mater Sci Eng B Solid State Mater Adv Tech. 2003;103:184–8.CrossRefGoogle Scholar
  15. 15.
    Kim WY, Palve BM, Pathan HM, Joo OS. Spray pyrolytic deposition of polycrystalline Cu2S thin films. Mater Chem Phys. 2011;131:525–8.CrossRefGoogle Scholar
  16. 16.
    Krunks M, Mellikov E, Bijakina O. Copper sulfides by chemical spray pyrolysis process. Phys Scr. 1997;T69:189–92.CrossRefGoogle Scholar
  17. 17.
    Isac LA, Duta A, Nanu M, Schoonman J. Tailoring copper sulfide thin films morphology using spray pyrolysis deposition technique. J Optoelectron Adv Mater. 2007;9:3072–5.Google Scholar
  18. 18.
    Isac L, Popovici I, Enesca A, Duta A. Copper sulfides thin films with controlled properties for photovoltaic cells. Environ Eng Manag J. 2011;10:1235–41.Google Scholar
  19. 19.
    Isac L, Duta A, Kriza A, Manolache S, Nanu M. Copper sulfides obtained by spray pyrolysis—possible absorbers in solid-state solar cells. Thin Solid Films. 2007;515:5755–8.CrossRefGoogle Scholar
  20. 20.
    Krunks M, Mikli V, Bijakina O, Rebane H, Mere A, Varema T, Mellikov E. Composition and structure of CuInS2 films prepared by spray pyrolysis. Thin Solid Films. 2000;361:61–4.CrossRefGoogle Scholar
  21. 21.
    Roncallo S, Painter JD, Ritchie SA, Cousins MA, Finnis MV, Rogers KD. Evaluation of different deposition conditions on thin films deposited by electrostatic spray deposition using a uniformity test. Thin Solid Films. 2010;518:4821–7.CrossRefGoogle Scholar
  22. 22.
    Suhail MH. Structural and optical properties of Zn doped CuInS2 thin films. Both J Optoelectron Adv Mater. 2012;14:136–43. Bull Mater Sci. 2012;6: 947–56.Google Scholar
  23. 23.
    Kaerber E, Katerski A, Oja-Acik I, Mikli V, Mere A, Krunks M. Effect of H2S treatment on properties of CuInS2 thin films deposited by chemical spray pyrolysis at low temperature. Thin Solid Films. 2011;519:7180–3.CrossRefGoogle Scholar
  24. 24.
    Cherian AS, Jinesh KB, Kashiwaba Y, Abe T, Balamurugan AK, Dash S, Tyagi AK, Kartha CS, Vijayakumar KP. Double layer CuInS2 absorber using spray pyrolysis: a better candidate for CuInS2/In2S3 thin film solar cells. Solar Energy. 2014;86:1872–79 and refs. therein.Google Scholar
  25. 25.
    Sharma AK, Rajaram P. Nanocrystalline thin films of CuInS2 grown by spray pyrolysis. Mater Sci Eng B. 2010;172:37–42.CrossRefGoogle Scholar
  26. 26.
    Fujiwara T, Okuya M, Kaneko S. Spray pyrolysis deposition of copper indium disulfide thin films. J Ceram Soc Jpn. 2002;110:81–5.CrossRefGoogle Scholar
  27. 27.
    Aguilera MLA, Ortega-Lopez M, Resendiz VMS, Hernandez JA, Trujillo MAG. Some physical properties of chalcopyrite and orthorhombic AgInS2 thin films prepared by spray pyrolysis. Mater Sci Eng B Solid State Mater Adv Tech. 2003;102:380–4.CrossRefGoogle Scholar
  28. 28.
    John TT, Kartha CS, Vijayakumar KP, Abe T, Kashiwaba Y. Preparation of indium sulfide thin films by spray pyrolysis using a new precursor indium nitrate. Appl Surf Sci. 2005;252:1360–7.CrossRefGoogle Scholar
  29. 29.
    Buecheler S, Corica D, Guettler D, Chirila A, Verma R, Müller U, Niesen TP, Palm J, Tiwari AN. Ultrasonically sprayed indium sulfide buffer layers for Cu(In, Ga)(S, Se)(2) thin-film solar cells. Thin Solid Films. 2009;517:2312–5.CrossRefGoogle Scholar
  30. 30.
    Otto K, Katerski A, Mere A, Volobujeva O, Krunks M. Spray pyrolysis deposition of indium sulphide thin films. Thin Solid Films. 2011;519:3055–60.CrossRefGoogle Scholar
  31. 31.
    Otto K, Katerski A, Volobujeva O, Mere A, Krunks M. Indium sulfide thin films deposited by chemical spray of aqueous and alcoholic solutions. Energy Procedia. 2011;3:63–9.CrossRefGoogle Scholar
  32. 32.
    Karadeniz SM, Ekinci AE, Tuzluca FN, Ertugrul M. ZnS thin film prepared by using chemical spray pyrolysis method. Asian J Chem. 2012;24:220–2.Google Scholar
  33. 33.
    Lopez MC, Espinos JP, Martin F, Leinen D, Ramos-Barrado JR. Growth of ZnS thin films obtained by chemical spray pyrolysis: the influence of precursors. J Cryst Growth. 2005;285:66–75.CrossRefGoogle Scholar
  34. 34.
    Hernandez-Fenollosa MA, Lopez MC, Donderis V, Gonzalez M, Mari B, Ramos-Barrado JR. Role of precursors on morphology and optical properties of ZnS thin films prepared by chemical spray pyrolysis. Thin Solid Films. 2008;516:1622–5.CrossRefGoogle Scholar
  35. 35.
    Oztas M, Bedir M, Ocak S, Yildirim RG. The role of growth parameters on structural, morphology and optical properties of sprayed ZnS thin films. J Mater Sci Mater Electr. 2007;18:505–12.CrossRefGoogle Scholar
  36. 36.
    Dedova T, Krunks M, Volobujeva O, Oja I. ZnS thin films deposited by spray pyrolysis technique. Phys State Solidi C Curr Top Solid State Phys. 2005;2:1161–6.Google Scholar
  37. 37.
    Ben Nasrallah T, Amlouk M, Bernede JC, Belgacem S. Structure and morphology of sprayed ZnS thin films. Phys State Solidi A Appl Res. 2004;201:3070–6.CrossRefGoogle Scholar
  38. 38.
    Elidrissi B, Addou M, Regragui M, Bougrine A, Kachouane A, Bernede JC. Structure, composition, and optical properties of ZnS thin films prepared by spray pyrolysis. Mater Chem Phys. 2001;68:175–9.CrossRefGoogle Scholar
  39. 39.
    Lenggoro IW, Okuyama K, de la Mora JF, Tohge N. Preparation of ZnS nanoparticles by electrospray pyrolysis. J Aerosol Sci. 2000;31:121–36.CrossRefGoogle Scholar
  40. 40.
    Martin FJ, Albers H, Lambeck PV, Vandevelde GMH, Popma TJA. Luminescent thin-films by the chemical aerosol deposition technology (CADT). J Aerosol Sci. 1991;22:S435–8.CrossRefGoogle Scholar
  41. 41.
    Kaneko S. Synthesis of semiconductor compound thin films for solar cells by a spray pyrolysis deposition technique. Can Ceram. 1999;68:50–5.Google Scholar
  42. 42.
    Kaneko S, Kosugi T, Fujiwara T, Okuya M, Attempt of spray pyrolysis deposition of various semiconducting thin films for solar cells. In: Kapur VK, McConnell RD, Carlson D, Ceasar GP, Rohatgi A, editors. Photovoltaics for the 21st century. 1999. Electrochemical Society Series 99:118–27.Google Scholar
  43. 43.
    Kosugi T, Murakami K, Kaneko S. Preparation and photovoltaic properties of tin sulfide and tin oxysulfide thin films by spray pyrolysis technique. In: Jones ED, Kalejs J, Noufi R, Sopori B, editors. Thin-film structures for photovoltaics. 1998. Materials Reseach Society Symposium Series. 485:273–8.Google Scholar
  44. 44.
    Fadavieslam MR, Shahtahmasebi N, Rezaee-Roknabadi M, Bagheri-Mohagheghi MM. A study of the photoconductivity and thermoelectric properties of SnxSy optical semiconductor thin films deposited by the spray pyrolysis technique. Phys Scr. 2011;84:035705.CrossRefGoogle Scholar
  45. 45.
    Reddy NK, Reddy KTR. SnS films for photovoltaic applications: physical investigations on sprayed SnxSy films. Phys B Condens Matter. 2005;368:25–31.CrossRefGoogle Scholar
  46. 46.
    Khelia C, Boubaker K, Ben Nasrallah T, Amlouk M, Belgacem S, Saadallah F, Yacoubi N. Morphological and thermal properties of beta-SnS2 crystals grown by spray pyrolysis technique. J Cryst Growth. 2009;311:1032–5.CrossRefGoogle Scholar
  47. 47.
    Khelia C, Maiz F, Mnari M, Ben Nasrallah T, Amlouk M, Belgacem S. Structural, optical and thermal properties of beta-SnS2 thin films prepared by the spray pyrolysis. Eur Phys J Appl Phys. 2000;9:187–93.CrossRefGoogle Scholar
  48. 48.
    Kumar KS, Manoharan C, Amalraj L, Dhanapandian S, Kiruthigaa G, Vijayakumar K. Spray deposition and characterization of undoped and In-doped tin disulphide thin films. Cryst Res Tech. 2012;47:771–9.CrossRefGoogle Scholar
  49. 49.
    Jaber AY, Alamri SN, Aida MS. SnS2 Thin film deposition by spray pyrolysis. Jpn J Appl Phys. 2012;51:Article No. 065801.Google Scholar
  50. 50.
    Sajeesh TH, Warrier AR, Kartha CS, Vijayakumar KP. Optimization of parameters of chemical spray pyrolysis technique to get n and p-type layers of SnS. Thin Solid Films. 2010;518:4370–4.CrossRefGoogle Scholar
  51. 51.
    Reddy NK, Reddy KTR. Preparation and characterisation of sprayed tin sulphide films grown at different precursor concentrations. Mater Chem Phys. 2007;102:13–8 and refs. therein.Google Scholar
  52. 52.
    Sajeesh TH, Jinesh KB, Kartha CS, Vijayakumar KP. Role of pH of precursor solution in taming the material properties of spray pyrolysed SnS thin films. Appl Surf Sci. 2012;258:6870–5.CrossRefGoogle Scholar
  53. 53.
    Salah HB, Bouzouita H, Rezig B. Preparation and characterization of tin sulphide thin films by a spray pyrolysis technique. Thin Solid Films. 2005;480–481:439–42.CrossRefGoogle Scholar
  54. 54.
    Bouaziz M, Boubaker K, Amlouk M, Belgacem S. Effect of Cu/Sn concentration ratio on the phase equilibrium-related properties of Cu-Sn-S sprayed materials. J Phase Equilib 2010;31:498–503 and refs. therein.Google Scholar
  55. 55.
    Adelifard M, Mohagheghi MMB, Eshghi H. Preparation and characterization of Cu2SnS3 ternary semiconductor nanostructures via the spray pyrolysis technique for photovoltaic applications. Phys Scripta. 2012;85:Art. No. 035603.Google Scholar
  56. 56.
    Madarász J, Bombicz P, Okuya M, Kaneko S. Thermal decomposition of thiourea complexes of Cu(I), Zn(II), and Sn(II) chlorides as precursors for the spray pyrolysis deposition of sulfide thin films. Solid State Ion. 2001;141–142:439–46.CrossRefGoogle Scholar
  57. 57.
    Bouaziz M, Ouerfelli J, Amlouk K, Belgacem S. Structural and optical properties of Cu3SnS4 sprayed thin films. Phys Status Solidi A Appl Mater Sci. 2007;204:3354–60.CrossRefGoogle Scholar
  58. 58.
    Chaudhuri TK, Tiwari D. Earth-abundant non-toxic Cu2ZnSnS4 thin films by direct liquid coating from metal-thiourea precursor solution. Sol Energy Mater Sol Cells. 2012;101:46–50.CrossRefGoogle Scholar
  59. 59.
    Kumar YBK, Babu GS, Bhaskar PU, Raja VS. Preparation and characterization of spray-deposited Cu2ZnSnS4 thin films. Sol Energy Mater Sol Cells. 2009;93:1230–37 and refs. therein.Google Scholar
  60. 60.
    Kamoun N, Bouzouita H, Rezig B. Fabrication and characterization of Cu2ZnSnS4 thin films deposited by spray pyrolysis technique. Thin Solid Films. 2007;515:5949–52.CrossRefGoogle Scholar
  61. 61.
    Rajeshmon VG, Kartha CS, Vijayakumar KP, Sanjeeviraja C, Abe T, Kashiwaba Y. Role of precursor solution in controlling the opto-electronic properties of spray pyrolysed Cu2ZnSnS4 thin films. Sol Energy. 2011;85:249–55.CrossRefGoogle Scholar
  62. 62.
    Krunks M, Madarász J, Hiltunen L, Mannonen R, Mellikov E, Niinistö L. Structure and thermal behaviour of dichlorobis(thiourea)cadmium(II), a single-source precursor for CdS thin films. Acta Chem Scand. 1997;51:294–301.CrossRefGoogle Scholar
  63. 63.
    Madarász J, Pokol G. Comparative evolved gas analyses on thermal degradation of thiourea by coupled TG-FTIR and TG/DTA-MS instruments. J Therm Anal Calorim. 2007;88:329–36.CrossRefGoogle Scholar
  64. 64.
    Krunks M, Madarász J, Leskelä T, Mere A, Pokol G, Niinistö L. Study of zinc thiocarbamide chloride, a single-source precursor for zinc sulfide thin films by spray pyrolysis. J Therm Anal Calorim. 2003;72:497–506.CrossRefGoogle Scholar
  65. 65.
    Madarász J, Krunks M, Niinistö L, Pokol G. Evolved gas analysis of dichlorobis(thiourea)zinc(II) by coupled TG-FTIR and TG/DTA-MS techniques. J Therm Anal Calorim. 2004;78:679–86.CrossRefGoogle Scholar
  66. 66.
    Madarász J, Bombicz P, Okuya M, Kaneko S, Pokol G. Online coupled TG-FTIR and TG/DTA-MS analyses of the evolved gases from dichloro(thiourea) tin(II). Solid State Ion. 2004;172:577–81.CrossRefGoogle Scholar
  67. 67.
    Madarász J, Bombicz P, Okuya M, Kaneko S, Pokol G. Comparative online coupled TG-FTIR and TG/DTA-MS analyses of the evolved gases from thiourea complexes of SnCl2 Tetrachloropenta(thiourea) ditin(II), a compound rich in thiourea. J Anal Appl Pyrol. 2004;72:209–14.CrossRefGoogle Scholar
  68. 68.
    Otto K, Bombicz P, Madarász J, Oja Acik I, Krunks M, Pokol G. Structure and evolved gas analyses (TG/DTA-MS and TG-FTIR) of mer-trichlorotris(thiourea)-indium(III), a precursor for indium sulfide thin films. J Therm Anal Calorim. 2011;105:83–91.CrossRefGoogle Scholar
  69. 69.
    Otto K, Oja Acik I, Tõnsuaadu K, Mere A, Krunks M. Thermoanalytical study of precursors for In2S3 thin films deposited by spray pyrolysis. J Therm Anal Calorim. 2011;105:615–23.CrossRefGoogle Scholar
  70. 70.
    Bombicz P, Mutikainen I, Krunks M, Leskelä T, Madarász J, Niinistö L. Synthesis, vibrational spectra and X-ray structures of copper(I) thiourea complexes. Inorg Chim Acta. 2004;357:513–25.CrossRefGoogle Scholar
  71. 71.
    Krunks M, Leskelä T, Mannonen R, Niinistö L. Thermal decomposition of copper(I) thiocarbamide chloride hemihydrates. J Therm Anal Calorim. 1998;53:355–64.CrossRefGoogle Scholar
  72. 72.
    Krunks M, Leskelä T, Mutikainen I, Niinistö L. A thermoanalytical study of copper(I) thiocarbamide compounds. J Therm Anal Calorim. 1999;56:479–84.CrossRefGoogle Scholar
  73. 73.
    Oja Acik I, Otto K, Krunks M, Tõnsuaadu K, Mere A. Thermal behaviour of precursors for CuInS2 thin films deposited by spray pyrolysis. J Therm Anal Calorim. 2013;113:1455–65.CrossRefGoogle Scholar
  74. 74.
    NIST Chemistry Webbook Standard Reference Database No 69, March, 2003 Release (http://webbook.nist.gov/chemistry), EPA Vapor Phase Library.
  75. 75.
    Krunks M, Katerski A, Dedova T, Oja Acik I, Mere A. Nanostructured solar cell based on spray pyrolysis deposited ZnO nanorod array. Sol Energy Mater Sol Cells. 2008;92:1016–9.CrossRefGoogle Scholar
  76. 76.
    Krunks M, Kärber E, Katerski A, Otto K, Oja Acik I, Dedova T, Mere A. Extremely thin absorber layer solar cells on zinc oxide nanorods by chemical spray. Sol Energy Mater Sol Cells. 2010;94:1191–5.CrossRefGoogle Scholar
  77. 77.
    Katerski A, Kärber E, Krunks M, Mikli V, Mere A. Mater Res Soc Symp Proc. 1447, 2012. doi: 10.1557/opl.2012.1511.
  78. 78.
    Kärber E, Abass A, Khelifi S, Burgelman M, Katerski A, Krunks M. Electrical characterization of all-layers-sprayed solar cell based on ZnO nanorods and extremely thin CIS absorber. Sol Energy. 2013;91:48–58.CrossRefGoogle Scholar
  79. 79.
    Kärber E, Otto K, Katerski A, Mere A, Krunks M. Raman spectroscopic study of In2S3 films prepared by spray pyrolysis. Mater Sci Semicond Proc. 2014;25:137–42.CrossRefGoogle Scholar
  80. 80.
    Dhanapandian S, Manohari AG, Manoharan C, Kumar KS, Mahalingam T. Optimization of spray deposition parameters for the formation of single-phase tin sulfide thin films. Mater Sci Semicond Proc. 2014;18:65–70.CrossRefGoogle Scholar
  81. 81.
    Adelifard M, Eshghi H, Mohagheghi MMB. Comparative studies of spray pyrolysis deposited copper sulfide nanostructural thin films on glass and FTO coated glass. Bull Mater Sci. 2012;35:739–44.CrossRefGoogle Scholar
  82. 82.
    Rahman F, Podder J, Ichimura M. Surf Rev Lett. 2013;20:Article No. 1350014.Google Scholar
  83. 83.
    Bedir M, Oztas M, Korkmaz D, Ozdemir Y. Influence of preparation conditions on the dispersion parameters of sprayed In2S3films. Arab J Sci Eng. 2014;39:503–9 and refs therein.Google Scholar
  84. 84.
    Kumar KS, Manoharan C, Dhanapandian S, Manohari AG, Mahalingam T. Effect of indium incorporation on properties of SnS thin films prepared by spray pyrolysis. Optik. 2014;125:3996–4000.CrossRefGoogle Scholar
  85. 85.
    Isac L, Andronic L, Enesca A, Duta A. Copper sulfide films obtained by spray pyrolysis for dyes photodegradation under visible light irradiation. J Photochem Photobiol A Chem. 2013;252:53–9.CrossRefGoogle Scholar
  86. 86.
    Dedova T, Krunks M, Gromyko I, Mikli V, Sildos I, Utt K, Unt T. Effect of Zn:S molar ratio in solution on the properties of ZnS thin films and the formation of ZnS nanorods by spray pyrolysis. Phys Stat Solidi A Appl Mater Sci. 2014;211:514–21 and refs. therein.Google Scholar
  87. 87.
    Khelia C, Boubaker K, Ben Nasrallah T, Amlouk M, Belgacem S. Morphological and thermal properties of beta-SnS2 sprayed thin films using Boubaker polynomials expansion. J Alloys Comp. 2009;477:461–67.Google Scholar
  88. 88.
    Kumar KS, Manohari AG, Dhanapandian S, Mahalingam T. Physical properties of spray pyrolyzed Ag-doped SnS thin films for opto-electronic applications. Mater Lett. 2014;131:167–70.CrossRefGoogle Scholar
  89. 89.
    Rajeshmon VG, Kartha CS, Vijayakumar KP. Modification of optoelectronic properties of sprayed CZTS thin films through spray rate variation. Solid State Phys. 2014;1591:1686–8 and refs. therein.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.Department of Inorganic and Analytical ChemistryBudapest University of Technology and EconomicsBudapestHungary
  2. 2.Department of Materials ScienceTallinn University of TechnologyTallinnEstonia
  3. 3.School of Chemical TechnologyAalto UniversityAaltoFinland

Personalised recommendations