Skip to main content
Log in

Evaluation of water properties in HEA–HEMA hydrogels swollen in aqueous-PEG solutions using thermoanalytical techniques

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Hydrogels are polymeric materials used in many pharmaceutical and biomedical applications due to their ability to form 3D hydrophilic polymeric networks, which can absorb large amounts of water. In the present work, polyethylene glycols (PEG) were introduced into the hydrogel liquid phase in order to improve the mechanical properties of hydrogels composed of 2-hydroxyethylacrylate and 2-hydroxyethylmethacrylate (HEA–HEMA) synthesized with different co-monomer compositions and equilibrated in water or in 20 % water–PEG 400 and 600 solutions. The thermoanalytical techniques [differential scanning calorimetry (DSC) and thermogravimetry (TG)] were used to evaluate the amount and properties of free and bound water in HEA–HEMA hydrogels. The internal structure and the mechanical properties of hydrogels were studied using scanning electron microscopy and friability assay. TG “loss-on-drying” experiments were applied to study the water-retention properties of hydrogels, whereas the combination of TG and DSC allowed estimating the total amount of freezable and non-freezing water in hydrogels. The results show that the addition of viscous co-solvent (PEG) to the liquid medium results in significant improvement of the mechanical properties of HEA–HEMA hydrogels and also slightly retards the water loss from the hydrogels. A redistribution of free and bound water in the hydrogels equilibrated in mixed solutions containing 20 vol% of PEGs takes place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50:27–46.

    Article  CAS  Google Scholar 

  2. Lin CC, Metters AT. Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev. 2006;58(12–13):1379–408.

    Article  CAS  Google Scholar 

  3. Kim JK, Kim HJ, Chung JY, Lee JH, Young SB, Kim YH. Natural and synthetic biomaterials for controlled drug delivery. Arch Pharm Res. 2014;1:60–8.

    Article  Google Scholar 

  4. Caló E, Khutoryanskiy VV. Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polymer J. 2014. doi:10.1016/j.eurpolymj.2014.11.024.

  5. Amin S, Rajabnezhad S, Kohli K. Hydrogels as potential drug delivery systems. Sci Res Essay. 2011;11:1175–83.

    Google Scholar 

  6. Hu X, Hao L, Wang H, et al. Hydrogel contact lens for extended delivery of ophthalmic drugs. Int J Polym Sci. 2011;2011:1–9.

  7. Ribeiro A, Veiga F, Santos D, Torres-Labandeira JJ, Concheiro A, Alvarez-Lorenzo C. Bioinspired imprinted PHEMA-hydrogels for ocular delivery of carbonic anhydrase inhibitor drugs. Biomacromolecules. 2011;12(3):701–9.

    Article  CAS  Google Scholar 

  8. Cetin D, Kahraman AS, Gümüşderelioğlu M. Novel scaffolds based on poly(2-hydroxyethyl methacrylate) superporous hydrogels for bone tissue engineering. J Biomater Sci Polym Ed. 2011;22:1157–78.

    CAS  Google Scholar 

  9. Slaughter B, Khurshid S, Fisher OZ, Khademhosseini A, Peppas NA. Hydrogels in regenerative medicine. Adv Mater. 2009;21:3307–29.

    Article  CAS  Google Scholar 

  10. John MS, Andrade JD. Water and hydrogels. J Biomed Mater Res. 1973;7:509–15.

    Article  Google Scholar 

  11. Salmerón-Sánchez M, Monleón Pradas M, Gómez Ribelles JL. Thermal transitions in PHEA hydrogels by thermomechanical analysis: a comparison with DSC data. Eur Polym J. 2004;40(2):329–34.

    Article  Google Scholar 

  12. Wood JM, Attwood D, Collett JH. The influence of gel formulation on the diffusion of salicylic acid in polyHEMA hydrogels. J Pharm Pharmacol. 1982;34(1):1–4.

    Article  CAS  Google Scholar 

  13. Wood JM, Attwood D, Collett JM. Characterization of poly(2-hydroxyethylmethacrylate) gels. Drug Dev Ind Pharm. 1983;9(1–2):93–101.

    Article  CAS  Google Scholar 

  14. Mackie JS, Meares P. The diffusion of electrolytes in a cation exchange resin membrane. Proc R Soc Lond. 1955;232:498–509.

    Article  CAS  Google Scholar 

  15. McBrierty VJ, Martin SJ, Karasz FE. Understanding hydrated polymers: the perspective of NMR. J Mol Liq. 1999;80:179–205.

    Article  CAS  Google Scholar 

  16. Sakai Y, Kuroki S, Satoh M. Water properties in the super-salt-resistive gel probed by NMR and DSC. Langmuir. 2008;24(13):6981–7.

    Article  CAS  Google Scholar 

  17. Baumgartner S, Lahajnar G, Sepe A, Kristl J. Investigation of the state and dynamics of water in hydrogels of cellulose ethers by 1H NMR spectroscopy. AAPS PharmSciTech. 2002;3(4):E36.

    Article  Google Scholar 

  18. Bouwstra JA, Salomon-de Vries MA, van Miltenburg JC. The thermal behaviour of water in hydrogels. Thermochim Acta. 1995;248:319–27.

    Article  CAS  Google Scholar 

  19. Goda T, Watanabe J, Takai M, Ishihara K. Water structure and improved mechanical properties of phospholipid polymer hydrogel with phosphorylcholine centered intermolecular cross-linker. Polymer. 2006;47(4):1390–6.

    Article  CAS  Google Scholar 

  20. Tomar N, Tomar M, Gulati N, Nagaich U. pHEMA hydrogels: devices for ocular drug delivery. Int J Health Allied Sci. 2012;4:224–30.

    Article  Google Scholar 

  21. Paterson SM, Shadforth AM, Shaw JA, Brown DH, Chirila TV, Baker MV. Improving the cellular invasion into PHEMA sponges by incorporation of the RGD peptide ligand: the use of copolymerization as a means to functionalize PHEMA sponges. Mater Sci Eng C Mater Biol Appl. 2013;33(8):4917–22.

    Article  CAS  Google Scholar 

  22. Dursch TJ, Taylor NO, Liu DE, Wu RY, Prausnitz JM, Radke CJ. Water-soluble drug partitioning and adsorption in HEMA/MAA hydrogels. Biomaterials. 2014;35(2):620–9.

    Article  CAS  Google Scholar 

  23. Jovašević JS, Dimitrijević SI, Filipović JM, Tomić SLj, Micić MM. Swelling, mechanical and antimicrobial studies of Ag/P(HEMA/IA)/PVP semi-IPN hybrid hydrogels. Acta Phys Pol A. 2011;2:279–83.

    Google Scholar 

  24. Hong KH, Jeon YS, Kim JH. Preparation and properties of modified PHEMA hydrogels containing thermo-responsive pluronic component. Macromol Res. 2009;1:26–30.

    Article  Google Scholar 

  25. Khutoryanskaya OV, Mayeva ZA, Mun GA, Khutoryanskiy VV. Designing temperature-responsive biocompatible copolymers and hydrogels based on 2-hydroxyethyl(meth)acrylates. Biomacromolecules. 2008;9(12):3353–61.

    Article  CAS  Google Scholar 

  26. Henning T. Polyethylene glycols (PEGs) and the pharmaceutical industry. PharmaChem. 2002;6:57–9.

    Google Scholar 

  27. Ostrowska-Czubenko J, Gierszewska-Druzyńska M. Effect of ionic crosslinking on the water state in hydrogel chitosan membranes. Carbohydr Polym. 2009;3:590–8.

    Article  Google Scholar 

  28. Ritger PL, Peppas NA. A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Rel. 1987;5:23–36.

    Article  CAS  Google Scholar 

  29. Katime I, Mendizábal E. Swelling properties of new hydrogels based on the dimethyl amino ethyl acrylate methyl chloride quaternary salt with acrylic acid and 2-methylene butane-1,4-dioic acid monomers in aqueous solutions. Mater Sci Appl. 2010;1:162–7.

    CAS  Google Scholar 

  30. De Kee D, Liu Q, Hinestroza J. Viscoelastic (non-Fickian) diffusion. Can J Chem Eng. 2005;6:913–29.

    Google Scholar 

  31. George KA, Wentrup-Byrne E, Hill DJT, Whittaker AK. Investigation into the diffusion of water into HEMA-co-MOEP hydrogels. Biomacromolecules. 2004;5(4):1194–9.

    Article  CAS  Google Scholar 

  32. Tomić S, Mićić M, Filipović J, Suljovrujić E. Swelling and drug release behavior of poly(2-hydroxyethyl methacrylate/itaconic acid) copolymeric hydrogels obtained by gamma irradiation. Radiat Phys Chem. 2007;5:801–10.

    Google Scholar 

  33. Wang J, Wu W, Lin Z. Kinetics and thermodynamics of the water sorption of 2-hydroxyethyl methacrylate/styrene copolymer hydrogels. J Appl Polym Sci. 2008;109:3018–23.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Rachel Armitage for help with recording SEM images. G. M. B. Tiguman acknowledges the “Science Without Boarders” student exchange program and the University of San Paulo, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Ermolina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hackl, E.V., Khutoryanskiy, V.V., Tiguman, G.M.B. et al. Evaluation of water properties in HEA–HEMA hydrogels swollen in aqueous-PEG solutions using thermoanalytical techniques. J Therm Anal Calorim 121, 335–345 (2015). https://doi.org/10.1007/s10973-015-4446-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4446-y

Keywords

Navigation