Skip to main content
Log in

Thermal and flammability study of polystyrene composites containing magnesium–aluminum layered double hydroxide (MgAl–C16 LDH), and an organophosphate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The flame retardancy and thermal stability of polystyrene compounded with Bis(2,4-dicumylphenyl)pentaerythritol diphosphate (DPP) and or a palmitate containing magnesium aluminum LDH (MgAl–C16 LDH) were investigated via thermogravimetric analysis, cone calorimetry, and pyrolysis combustion flow calorimetry. Cone calorimetry and thermogravimetry measurements revealed that the addition of 5 and 10 mass% of MgAl–C16 LDH to PS resulted in substantial reduction in peak heat release rate (PHRR) (47 and 61 %, respectively) of the polymer and minimal improvements in thermal stability (5 and 2 °C, respectively, for the temperature at which 50 % mass loss occurs, ΔT 50). On the other hand, there was insignificant reduction in PHRR for composites containing DPP at loadings of 5 mass%, while loadings of 10 mass% resulted in a relatively low reduction of 22 %. This difference was attributed to the more compact residue formed by the LDH systems during cone calorimetry analysis. There was substantial improvements in the thermal stability of PS compounded with 10 mass% of DPP with ΔT 50 being 21 °C. The combination of DPP and LDH resulted in a negative effect on the flammability performance of the LDH; thus, we did not observe any synergism between the LDH and DPP. Results from micro-scale combustion calorimetry did not correlate with results from cone calorimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wilkie CA, Morgan AB. Fire retardancy of polymeric materials. 2nd ed. Florida: CRC Press; 2010.

    Google Scholar 

  2. Gilman JW. Flammability and thermal stability studies of polymer layered-silicate nanocomposites. Appl Clay Sci. 1999;15:31–49.

    Article  CAS  Google Scholar 

  3. Schartel B. Phosphorus-based flame retardancy mechanisms: old hat or a starting point for future development? Materials (Basel). 2010;3:4710–45.

    Article  CAS  Google Scholar 

  4. Bourbigot S, Duquesne S. Fire retardant polymers: recent developments and opportunities. J Mater Chem. 2007;17:2283–3000.

    Article  CAS  Google Scholar 

  5. Costache MC, Kanugh EM, Wilkie CA, Sorathia U. Fire retardancy of polyureas. J Fire Sci. 2006;24:433–44.

    Article  CAS  Google Scholar 

  6. Green J. A review of phosphorus-containing flame retardants. J Fire Sci. 1992;10:470–87.

    Article  CAS  Google Scholar 

  7. Levchik SV, Weil ED. Flame retardants in commercial use or in advanced development in polycarbonates and polycarbonate blends. J Fire Sci. 2006;24:137–51.

    Article  CAS  Google Scholar 

  8. Weil ED, Levchik SV. Commercial flame retardancy of polyurethanes. J Fire Sci. 2004;22:183–210.

    Article  CAS  Google Scholar 

  9. Zhang S, Horrocks AR. A review of flame retardant polypropylene fibres. Prog Polym Sci. 2003;28:1517–38.

    Article  CAS  Google Scholar 

  10. Levchik SV, Weil ED. A review of recent progress in phosphorus-based flame retardants. J Fire Sci. 2006;24:345–64.

    Article  CAS  Google Scholar 

  11. Weil ED, Levchik SV. Flame retardants for polystyrenes in commercial use or development. J Fire Sci. 2007;25:241–65.

    Article  CAS  Google Scholar 

  12. Kelly SM, Konstantinov A, Klosterhaus S, Watkins D, Mcclean MD, Webster TF. Alternate and new brominated flame retardants detected in U. S. house dust. Environ Sci Technol. 2008;42:6910–6.

    Article  Google Scholar 

  13. Birnbaum LS, Staskal DF. Brominated flame retardants: cause for concern? Environ Health Perspect. 2004;112:9–17.

    Article  CAS  Google Scholar 

  14. Hale RC, La Guardia MJ, Harvey EP, Mainor TM, Duff WH, Gaylor MO. Polybrominated diphenyl ether flame retardants in virginia freshwater fishes (USA). Environ Sci Technol. 2001;35:4585–91.

    Article  CAS  Google Scholar 

  15. Liu H, Zhong Q, Kong Q, Zhang X, Li Y, Zhang J. Synergistic effect of organophilic Fe-montmorillonite on flammability in polypropylene/intumescent flame retardant system. J Therm Anal Calorim. 2014;117:693–9.

    Article  CAS  Google Scholar 

  16. Yang D, Hu Y, Li H, Song L, Xu H, Li B. Synergistic flame retardant effect of α-zirconium phosphate in low-density polyethylene ethylene–vinyl acetate/aluminum hydroxide hybrids. J Therm Anal Calorim. 2014. doi:10.1007/s10973-014-4175-7.

    Google Scholar 

  17. Palieskova J, Pajtasova M, Feriancova A, Ondrusova D, Holcova K, Vavro J Jr, Mojumdar SC. Thermal properties of fillers based on organoclays in the polymeric materials. J Therm Anal Calorim. 2014. doi:10.1007/s10973-014-4109-4.

    Google Scholar 

  18. Costantino U, Gallipoli A, Nocchetti M, Camino G, Bellucci F, Frache A. New nanocomposites constituted of polyethylene and organically modified ZnAl-hydrotalcites. Polym Degrad Stab. 2005;90:586–90.

    Article  CAS  Google Scholar 

  19. Piszczyk Ł, Danowska M, Mietlarek-Kropidlowska A, Szyszka M, Strankowski M. Synthesis and thermal studies of flexible polyurethane nanocomposite foams obtained using nanoclay modified with flame retardant compound. J Therm Anal Calorim. 2014;118:901–9.

    Article  CAS  Google Scholar 

  20. Manzi-Nshuti C, Wang D, Hossenlopp JM, Wilkie CA. Aluminum-containing layered double hydroxides: the thermal, mechanical, and fire properties of (nano)composites of poly(methyl methacrylate). J Mater Chem. 2008;18:3091–102.

    Article  CAS  Google Scholar 

  21. Nyambo C, Songtipya P, Manias E, Jimenez-Gasco MM, Wilkie CA. Effect of MgAl-layered double hydroxide exchanged with linear alkyl carboxylates on fire-retardancy of PMMA and PS. J Mater Chem. 2008;18:4827–38.

    Article  CAS  Google Scholar 

  22. Zhang P, Kang M, Hu Y. Influence of layered zinc hydroxide nitrate on thermal properties of paraffin/intumescent flame retardant as a phase change material. J Therm Anal Calorim. 2013;112:1199–205.

    Article  CAS  Google Scholar 

  23. Li L, Qian Y, Jiao CM. Synergistic flame retardant effect of melamine in ethylene–vinyl acetate/layered double hydroxides composites. J Therm Anal Calorim. 2013;114:45–55.

    Article  Google Scholar 

  24. Chen X, Jiang Y, Jiao C. Synergistic effects between hollow glass microsphere and ammonium polyphosphate on flame-retardant thermoplastic polyurethane. J Therm Anal Calorim. 2014;117:857–66.

    Article  CAS  Google Scholar 

  25. Yi J, Liu Y, Cai X. The synergistic effect of adjuvant on the intumescent flame-retardant ABS with a novel charring agent. J Therm Anal Calorim. 2013;113:753–61.

    Article  CAS  Google Scholar 

  26. Bao X, Cai X. Synergistic effect of methyl phenyl silicone resin and DOPO on the flame retardancy of epoxy resins. J Therm Anal Calorim. 2014;118:369–75.

    Article  CAS  Google Scholar 

  27. Nevare MR, Gite VV, Mahulikar PP, Ahamad A, Rajput SD. Synergism between LDH and nano-zinc phosphate on the flammability and mechanical properties of polypropylene. Polym Plast Technol Eng. 2014;53:429–34.

    Article  CAS  Google Scholar 

  28. Lu H, Wilkie CA. Synergistic effect of carbon nanotubes and decabromodiphenyl oxide/Sb2O3 in improving the flame retardancy of polystyrene. Polym Degrad Stab. 2010;95:564–71.

    Article  CAS  Google Scholar 

  29. Nyambo C, Chen D, Su S, Wilkie CA. Does organic modification of layered double hydroxides improve the fire performance of PMMA ? Polym Degrad Stab. 2009;94:1298–306.

    Article  CAS  Google Scholar 

  30. Gilman JW, Kashiwagi T, Nyden M, Brown JET, Jackson CL, Lomakin S, Gianellis EP, Manias E. Flammability studies of polymer layered silicate nanocomposites: polyolefin, epoxy and vinyl ester resins. In: Al-Malaika S, Golovoy A, Wilkie CA, editors. Chemistry and technology of polymer additives. London: Blackwell Scientific; 1999. p. 249–65.

    Google Scholar 

  31. Gao L, Zheng G, Zhou Y, Hu L, Feng G. Thermal performances and fire behaviors of rosin-based rigid polyurethane foam nanocomposites. J Therm Anal Calorim. 2014. doi:10.1007/s10973-014-4192-6.

    Google Scholar 

  32. Mallakpour S, Dinari M. The effects of reactive organoclay on the thermal, mechanical, and microstructural properties of polymer/layered silicate nanocomposites based on chiral poly(amide-imide)s. J Therm Anal Calorim. 2013;114:329–37.

    Article  CAS  Google Scholar 

  33. Pérez-Ramírez J, Abelló S, van der Pers NM. Influence of the divalent cation on the thermal activation and reconstruction of hydrotalcite-like compounds. J Phys Chem C. 2007;111:3642–50.

    Article  Google Scholar 

  34. Del Arco M, Cebadera E, Gutiérrez S, Martín C, Montero MJ, Rives V, Rocha J, Sevilla MA. Mg, Al layered double hydroxides with intercalated indomethacin: synthesis, characterization, and pharmacological study. J Pharm Sci. 2004;93:1649–58.

    Article  Google Scholar 

  35. Xu X, Li D, Song J, Lin Y, Lv Z, Wei M, Duan X. Synthesis of Mg–Al–carbonate layered double hydroxide by an atom-economic reaction. Particuology. 2010;8:198–201.

    Article  CAS  Google Scholar 

  36. Krishna SV, Pugazhenthi G. Properties and thermal degradation kinetics of polystyrene/organoclay nanocomposites synthesized by solvent blending method : effect of processing conditions and organoclay loading. J Appl Polym Sci. 2011;120:1322–36.

    Article  CAS  Google Scholar 

  37. Manzi-Nshuti C, Songtipya P, Manias E, Jimenez-Gasco MM, Hossenlopp JM, Wilkie CA. Polymer nanocomposites using zinc aluminum and magnesium aluminum oleate layered double hydroxides: effects of LDH divalent metals on dispersion, thermal, mechanical and fire performance in various polymers. Polymer. 2009;50:3564–74.

    Article  CAS  Google Scholar 

  38. Fan F, Xia Z, Li Q, Li Z, Chen H. Thermal stability of phosphorus-containing styrene–acrylic copolymer and its fire retardant performance in waterborne intumescent coatings. J Therm Anal Calorim. 2013;114:937–46.

    Article  CAS  Google Scholar 

  39. Chigwada G, Kandare E, Wang D, Majoni S, Mlambo D, Wilkie CA, Hossenlopp JM. Thermal stability and degradation kinetics of polystyrene/organically modified montmorillonite nanocomposites. J Nanosci Nanotechnol. 2008;8:1927–36.

    Article  CAS  Google Scholar 

  40. Unnikrishnan L, Mohanty S, Nayak SK. Evaluation of flame retardancy and shear resistivity characteristics of organoclay within acrylate polymer. J Therm Anal Calorim. 2014;118:405–16.

    Article  CAS  Google Scholar 

  41. Babrauskas V, Peacock RD. Heat release rate: the single most important variable in fire hazard. Fire Saf J. 1992;18:255–72.

    Article  CAS  Google Scholar 

  42. Kashiwagi T, Du F, Douglas JF, Winey KI, Harris RH, Shields JR. Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat Mater. 2005;4:928–33.

    Article  CAS  Google Scholar 

  43. Costache MC, Heidecker MJ, Manias E, Camino G, Frache A, Beyer G, Gupta RK, Wilkie CA. The influence of carbon nanotubes, organically modified montmorillonites and layered double hydroxides on the thermal degradation and fire retardancy of polyethylene, ethylene–vinyl acetate copolymer and polystyrene. Polymer (Guildf). 2007;48:6532–45.

    Article  CAS  Google Scholar 

  44. Majoni S, Su S, Hossenlopp JM. The effect of boron-containing layered hydroxy salt (LHS) on the thermal stability and degradation kinetics of poly(methyl methacrylate). Polym Degrad Stab. 2010;95:1593–604.

    Article  CAS  Google Scholar 

  45. Lyon RE, Walters RN. Pyrolysis combustion flow calorimetry. J Anal Appl Pyrolysis. 2004;71:27–46.

    Article  CAS  Google Scholar 

  46. Lu H, Wilkie CA. Study on intumescent flame retarded polystyrene composites with improved flame retardancy. Polym Degrad Stab. 2010;95:2388–95.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Author would like to thank Professor C. A. Wilkie of Marquette University, USA, for the use of the cone calorimeter and SDT 2960 simultaneous DTA–TGA instrument. I would also like to thank Lumbidzani Moyo of Council for Scientific and Industrial Research, South Africa, for the MgAl–CO3 TG spectrum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Majoni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majoni, S. Thermal and flammability study of polystyrene composites containing magnesium–aluminum layered double hydroxide (MgAl–C16 LDH), and an organophosphate. J Therm Anal Calorim 120, 1435–1443 (2015). https://doi.org/10.1007/s10973-015-4427-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4427-1

Keywords

Navigation