Journal of Thermal Analysis and Calorimetry

, Volume 119, Issue 3, pp 1653–1661 | Cite as

DTA study of the crystallization of Li2O–Nb2O5–SiO2–TiO2 glass

  • V. D. Živanović
  • M. B. Tošić
  • S. R. Grujić
  • S. D. Matijašević
  • J. N. Stojanović
  • J. D. Nikolić
  • S. V. Smiljanić
Article

Abstract

In this study, the crystallization of 30Li2O·15Nb2O5·50SiO2·5TiO2 (mol%) glass was examined. The parent glass was prepared by the standard melt quenching method, and the investigations were performed under non-isothermal and isothermal conditions using the DTA, XRD, SEM and EDS methods. The results revealed primary crystallization of this glass and the dendritic morphology of crystal growth. Three crystalline phases were formed in the glass matrix during crystallization, whereby LiNbO3 was formed as the primary phase, followed by Li2Si2O5 and SiO2 as the secondary. The surface and volume mechanisms of crystallization occur. The condition that both the mechanisms were dominant was determined. In the case of volume crystallization, the characteristics of the nucleation process were examined. The kinetic parameters of crystallization under different mechanisms of crystallization were determined.

Keywords

Glass Crystallization LiNbO3 DTA 

Notes

Acknowledgements

The authors are grateful to the Ministry of Education, Science and Technological Development of the Republic of Serbia for financial support (Projects 34001 and 172004).

References

  1. 1.
    Abouelleil MM, Leonberger FJ. Waveguides in lithium niobate. J Am Ceram Soc. 1989;72:1311–21.CrossRefGoogle Scholar
  2. 2.
    Peterson GE, Ballman AA, Lenzo PV, Bridenbauch MP. Electro-optic properties of LiNbO3. Appl Phys Lett. 1964;5:62–4.CrossRefGoogle Scholar
  3. 3.
    Xue D, Kitamura K. Crystallographic modifications of physical properties of lithium niobate crystals by the cation location. J Cryst Growth. 2003;249:507–13.CrossRefGoogle Scholar
  4. 4.
    Dravecz G, Shackmann B, Cochez M, Ferriol M. Investigation of new fluxes for the single-crystal growth of stoichiometric lithium niobate. J Therm Anal Calorim. 2007;90:343–5.CrossRefGoogle Scholar
  5. 5.
    Khalameida S, Sydorchuk V, Leboda R, Skubiszewska-Zieba J, Zazhigalov V. Preparation of nano-dispersed lithium niobate by mechanochemical route. J Therm Anal Calorim. 2014;115:579–86.CrossRefGoogle Scholar
  6. 6.
    Todorovic M, Radonjic LJ. Lithium-niobate ferroelectric material obtained by glass crystallization. Ceram Int. 1997;23:55–60.CrossRefGoogle Scholar
  7. 7.
    Kim HG, Komatsu T, Sato R, Matusita K. Crystallization of LiNbO3 in tellurite glasses. J Non-Cryst Solids. 1993;162:201–4.CrossRefGoogle Scholar
  8. 8.
    Syam Prasad N, Varma KBR. Evolution of ferroelectric LiNbO3 phase in a reactive glass matrix (LiBO2–Nb2O5). J Non-Cryst Solids. 2005;351:1455–65.CrossRefGoogle Scholar
  9. 9.
    Graca MPF, da Ferreira Silva MG, Valente MA. Structural and electrical characteristics of LiNbO3 embedded in a 34% SiO2 glass matrix. J Eur Ceram Soc. 2008;28:1197–203.CrossRefGoogle Scholar
  10. 10.
    Sigaev VN, Golubev NV, Usmanova IZ, Stefanovich SYu, Pernice P, Fanelli E, Arone A, Champagnon B, Califano V, Vouagner D, Konstantinova TE, Glazunova VA. On the nature of the second-order optical nonlinearity of nanoinhomogeneous glasses in the Li2O–Nb2O5–SiO2 system. Glass Phys Chem. 2007;40:97–105.CrossRefGoogle Scholar
  11. 11.
    Prapitpongwanicha P, Pengpata K, Rüssel C. Phase separation and crystallization in LiNbO3/SiO2 glasses. Mater Chem Phys. 2009;113:913–8.CrossRefGoogle Scholar
  12. 12.
    Vigouroux H, Fargin E, Fargues A, Le Garrec B, Dussauze M, Rodriguez V, Adamietz F, Mountrichas G, Kamitsos E, Lotrev S, Sigaev V. Crystallization and second harmonic generation of lithium niobium silicate glass ceramics. J Am Ceram Soc. 2011;94:2080–6.CrossRefGoogle Scholar
  13. 13.
    Mazurin OV, Strelcina MV, Shaiko-Shaikovskaja TP. Properties of glasses and glass-forming melts, vol. 5. Lenjingrad: Nauka; 1981.Google Scholar
  14. 14.
    Höland W, Beall GH. Glass-ceramic technology. 2nd ed. Ohio: The American Ceramic Society; 2012.CrossRefGoogle Scholar
  15. 15.
    Rodrigues-Carvajal J User’s guide to program FULLPROF, 2004-LLB-JRC (Laboratorie León Brillouin, CEA-CNRS, Centre d’Etudes de Saclay, Gif sur Yvette, France) 1995.Google Scholar
  16. 16.
    Hruby A. Evaluation of glass forming tendency by means of DTA. Czechoslov J Phys B. 1972;22:1187–93.CrossRefGoogle Scholar
  17. 17.
    Zotov N, Boysen H, Frey F, Metzger T, Born E. Cation substitution models of congruent LiNbO3, investigated by X-ray and neutron powder diffraction. J Phys Chem Solids. 1994;5:145–52.CrossRefGoogle Scholar
  18. 18.
    De Jong BHWS, Slaats PGG, Super HTJ, Veldman N, Spek AL. Extended structures in crystalline phyllosilicates: silica ring systems in lithium, rubidium, cesium, and cesium/lithium phyllosilicate. J Non-Cryst Solids. 1994;176:164–71.CrossRefGoogle Scholar
  19. 19.
    Petzoldt J, Pannhorst W. Chemistry and structure of glass-ceramic materials for high precision optical application. J Non-Cryst Solids. 1991;129:191–8.CrossRefGoogle Scholar
  20. 20.
    Ray CS, Yang Q, Haung W, Day DE. Surface and internal crystallization in glasses as determined by differential thermal analysis. J Am Ceram Soc. 1996;79:3155–60.CrossRefGoogle Scholar
  21. 21.
    Ray CS, Day DE, Haung W, Lakshmi Narayan K, Cull TC, Kelton KF. Non-isothermal calorimetric studies of the crystallization of lithium disilicate glass. J Non-Cryst Solids. 1996;204:1–12.CrossRefGoogle Scholar
  22. 22.
    Kelton KF, Lakshmi Narayan K, Levin LE, Cull TC, Ray CS. Computer modeling of non-isothermal crystallization. J Non-Cryst Solids. 1996;204:13–31.CrossRefGoogle Scholar
  23. 23.
    Marotta A, Buri A, Branda F. Nucleation in glass and differential thermal analysis. J Mater Sci. 1981;16:341–4.CrossRefGoogle Scholar
  24. 24.
    Ray CS, Day DE. Determining the nucleation rate curve for lithium disilicate glass by differential thermal analysis. J Am Ceram Soc. 1990;73:439–42.CrossRefGoogle Scholar
  25. 25.
    Weinberg MC. Interpretation of DTA experiments used for crystal nucleation rate determinations. J Am Ceram Soc. 1991;74:1905–9.CrossRefGoogle Scholar
  26. 26.
    Kelton KF. Estimation of the nucleation rate by differential scanning calorimetry. J Am Ceram Soc. 1992;75:2449–52.CrossRefGoogle Scholar
  27. 27.
    Fokin VM, Zanotto ED, Yuritsyn NS, Schmelzer WP. Homogeneous crystal nucleation in silicate glasses: a 40 years perspective, review. J Non-Cryst Solids. 2006;352:2681–714.CrossRefGoogle Scholar
  28. 28.
    Tošić MB, Živanović VD, Grujić SR, Stojanović JD, Nikolić JD. A study of the primary crystallization of a mixed anion silicate glass. J Non-Cryst Solids. 2008;354:3694–704.CrossRefGoogle Scholar
  29. 29.
    Fokin VM, Cabral AA, Reis MCV, Nascimento MLF, Zanotto ED. Critical assessment of DTA-DSC methods for the study of nucleation. J Non-Cryst Solids. 2010;356:358–67.CrossRefGoogle Scholar
  30. 30.
    Tošić MB, Grujić SR, Živanović VD, Nikolić JD, Matijašević SD. The nucleation of K2O·TiO2·3GeO2 glass under non-isothermal conditions. J Non-Cryst Solids. 2010;356:1385–91.CrossRefGoogle Scholar
  31. 31.
    Ozawa T. A modified method for kinetic analysis of thermoanalytical data. J Therm Anal. 1976;9:369–73.CrossRefGoogle Scholar
  32. 32.
    Yinnon H, Uhlmann DR. Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquidus, part I: theory. J Non-Cryst Solids. 1983;54:253–75.CrossRefGoogle Scholar
  33. 33.
    Živanović VD, Grujić SR, Tošić MB, Blagojević NS, Nikolić JD. Non-isothermal crystallization of K2O·TiO2·3GeO2 glass. J Therm Anal Calorim. 2009;96:427–32.CrossRefGoogle Scholar
  34. 34.
    Kelton KF. Analysis of crystallization kinetics. Mat Sci Eng A. 1997;226–228:142–50.CrossRefGoogle Scholar
  35. 35.
    MacFarlane DR, Matecki M, Poulain M. Crystallization in fluoride glasses. J Non-Cryst Solids. 1984;64:351–62.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  • V. D. Živanović
    • 1
  • M. B. Tošić
    • 1
  • S. R. Grujić
    • 2
  • S. D. Matijašević
    • 1
  • J. N. Stojanović
    • 1
  • J. D. Nikolić
    • 1
  • S. V. Smiljanić
    • 2
  1. 1.Institute for the Technology of Nuclear and Other Mineral Raw MaterialsBelgradeSerbia
  2. 2.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia

Personalised recommendations