Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 120, Issue 2, pp 1407–1416 | Cite as

Enhanced heat transfer for PCM melting in the frustum-shaped unit with multiple PCMs

  • Zhipei Hu
  • Angui LiEmail author
  • Ran Gao
  • Haiguo Yin
Article

Abstract

Thermal energy storage plays an important role in correcting the disparity between energy supply and demand as well as improving the energy efficiency. The present work numerically investigates the conjugate heat transfer between PCM and heat transfer fluid within the novel and efficient frustum-shaped thermal storage units. A two-dimensional control volume-based numerical model is developed employing the CFD software Fluent. Five units of equal volume but different dimensions are compared to illustrate impacts of geometry on melting, and the optimal geometric design is determined. Then, the multiple PCMs technology is employed to the optimal unit to further enhance the melting heat transfer. Effects of the multiple PCMs arrangement, multiple PCMs’ melting temperature distribution, and type on the melting behavior and heat transfer are investigated. Compared with the frustum-shaped and traditional shell-and-tube unit with a single PCM, predicted results indicate that the five PCMs arrangement in frustum-shaped unit can make the thermal storage time reduced by 21.5 % and 47.5 %, respectively. The great improvement may be of great significance to the optimal design of latent heat storage.

Keywords

Melting Heat transfer enhancement Frustum-shaped unit Multiple PCMs Nature convection 

Notes

Acknowledgments

Support from the National Science and Technology Supporting Program (No. 2011BAJ03B03) in this study is gratefully acknowledged.

References

  1. 1.
    Tyagi V-V, Pandey A-K, Kaushik S-C, Tyagi S-K. Thermal performance evaluation of a solar air heater with and without thermal energy storage. J Therm Anal Calorim. 2012;107:1345–52.CrossRefGoogle Scholar
  2. 2.
    Levin P-P, Shitzer A, Hetsroni G. Numerical optimization of a PCM-based heat sink with internal fins. Int J Heat Mass Transf. 2013;61:638–45.CrossRefGoogle Scholar
  3. 3.
    Hosseinizadeh S-F, Tan F-L, Moosania S-M. Experimental and numerical studies on performance of PCM-based heat sink. Appl Therm Eng. 2011;31:3827–38.CrossRefGoogle Scholar
  4. 4.
    Parameshwaran R, Jayavel R, Kalaiselvam S. Study on thermal properties of organic ester phase-change material embedded with silver nanoparticles. J Therm Anal Calorim. 2013;114:845–58.CrossRefGoogle Scholar
  5. 5.
    Wang N, Zhang X-R, Zhu D-S, Gao J-W. The investigation of thermal conductivity and energy storage. J Therm Anal Calorim. 2012;107:949–54.CrossRefGoogle Scholar
  6. 6.
    Hawlader M-N-A, Uddin M-S, Khin M-M. Microencapsulated PCM thermal energy storage system. Appl Energy. 2003;74:195–202.CrossRefGoogle Scholar
  7. 7.
    Shaikh S, Lafdi K. Effect of multiple phase change materials (PCMs) slab configurations on thermal energy storage. Energy Convers Manage. 2006;47:2103–17.CrossRefGoogle Scholar
  8. 8.
    Cao Y, Faghri A. Performance characteristics of a thermal energy storage module: a transient PCM/forced convection conjugate analysis. Int J Heat Mass Transf. 1991;34:93–101.CrossRefGoogle Scholar
  9. 9.
    Zhang Y, Faghri A. Semi-analytical solution of thermal energy storage system with conjugate laminar forced convection. Int J Heat Mass Transf. 1996;39:711–24.Google Scholar
  10. 10.
    Trp A, Lenic K, Frankovic B. Analysis of the influence of operating conditions and geometric parameters on heat transfer in water-paraffin shell-and-tube latent thermal energy storage unit. Appl Therm Eng. 2006;26:1830–9.CrossRefGoogle Scholar
  11. 11.
    Hosseini M-J, Rahimi M, Bahrampoury R. Experimental and computational evolution of a shell and tube heat exchanger as a PCM thermal storage system. Int Commun Heat Mass. 2014;50:128–36.CrossRefGoogle Scholar
  12. 12.
    Akgün M, Aydın O, Kaygusuz K. Thermal energy storage performance of paraffin in a novel tube-in-shell system. Appl Therm Eng. 2008;28:405–13.CrossRefGoogle Scholar
  13. 13.
    Darzi A-R, Farhadi M, Sedighi K. Numerical study of melting inside concentric and eccentric horizontal annulus. Appl Math Model. 2012;36:4080–6.CrossRefGoogle Scholar
  14. 14.
    Koizumi H, Jin Y. Performance enhancement of a latent heat thermal energy storage system using curved-slab containers. Appl Therm Eng. 2012;37:145–53.CrossRefGoogle Scholar
  15. 15.
    Fraid M-M, Kanzawa A. Thermal performance of a heat storage module using PCM’s with different melting temperatures: mathematical modeling. J Sol Energy. 1989;111:152–7.CrossRefGoogle Scholar
  16. 16.
    Wang J, Ouyang Y, Chen G. Experimental study on charging processes of a cylindrical heat storage capsule employing multiple-phase-change materials. Int J Energy Res. 2001;25:439–47.CrossRefGoogle Scholar
  17. 17.
    Fang M, Chen G. Effects of different multiple PCMs on the performance of a latent thermal energy storage system. Appl Therm Eng. 2007;27:994–1000.CrossRefGoogle Scholar
  18. 18.
    Adine H-A, Qarnia H-E. Numerical analysis of the thermal behaviour of a shell-and-tube heat storage unit using phase change materials. Appl Math Model. 2009;33:2132–44.CrossRefGoogle Scholar
  19. 19.
    Trp A. An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell-and-tube latent thermal energy storage unit. Sol Energy. 2005;79:648–60.CrossRefGoogle Scholar
  20. 20.
    Trp A, Lenic K, Frankovic B. Analysis of the influence of operating conditions and geometric parameters on heat transfer in water-paraffin shell-and-tube latent thermal energy storage unit. Appl Therm Eng. 2006;26:1830–9.CrossRefGoogle Scholar
  21. 21.
    Kurnia J, Sasmito A, Jangam S, Mujumdar A. Improved design for heat transfer performance of a novel phase change material (PCM) thermal energy storage (TES). Appl Therm Eng. 2013;50:896–907.CrossRefGoogle Scholar
  22. 22.
    Watanabe T, Kikuchi H, Kanzawa A. Enhancement of charging and dis-charging rates in a latent heat storage system by use of PCM with different melting temperatures. Heat Recovery Syst CHP. 1993;13:57–66.CrossRefGoogle Scholar
  23. 23.
    Hosseini M-J, Rahimi M, Bahrampoury R. Experimental and computational evolution of a shell and tube heat exchanger as a PCM thermal storage system. Int Commun Heat Mass. 2014;50:128–36.CrossRefGoogle Scholar
  24. 24.
    FLUENT 6.3 user’s guide 2006:24–9.Google Scholar
  25. 25.
    Akgün M, Aydın O, Kaygusuz K. Experimental study on melting/solidification characteristics of a paraffin as PCM. Energy Convers Manage. 2007;48:669–78.CrossRefGoogle Scholar
  26. 26.
    Shmueli H, Ziskind G, Letan R. Melting in a vertical cylindrical tube: numerical investigation and comparison with experiments. Int J Heat Mass Transf. 2010;53:4082–91.CrossRefGoogle Scholar
  27. 27.
    Kurnia JC, Sasmito AP, Jangam SV, et al. Improved design for heat transfer performance of a novel phase change material (PCM) thermal energy storage (TES). Appl Therm Eng. 2013;50:896–907.CrossRefGoogle Scholar
  28. 28.
    Longeon M, Soupart A, Fourmigué J-F, Bruch A, Marty P. Experimental and numerical study of annular PCM storage in the presence of natural convection. Appl Energy. 2013;112:175–84.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.School of Environmental and Municipal EngineeringXi’an University of Architecture and TechnologyXi’anPeople’s Republic of China

Personalised recommendations