Journal of Thermal Analysis and Calorimetry

, Volume 119, Issue 3, pp 1633–1651 | Cite as

The geometry of closed sets in the state of chemical transformation

A pedagogic review from first principles to first applications in an undergraduate thermal analysis laboratory for secondary schools
  • V. V. KlyucharevEmail author
  • S. V. Klyuchareva


The history of technology provides many cases where simplified forms of man-made motion replace tangled forms of native motion. One of the reasons for these substitutions is the lack of approaches to the categorical recognition of information about the topology and the geometry of body in the state of transformation. As a consequence, there arises a barrier between chemistry and materials science. The aim of this paper is to direct a way to the solution of the problem, using a simple example of chemical bursting with the dimension of becoming D B = log 2/log 2 = 1 for the one-dimensional process and D B = log 7/log 2 ≈ 2.8074 for the three-dimensional process at all their scales.


Topology Geometry Fractals Combustion Chemical materials science Chemical reactivity 



We are deeply grateful for the support of new combustion science at design stage from Russian State Committee of Science and Technology (Project “Konus”), Soros International Science Foundations (Grant N9K000), Russian Government (Grant N9K300), Russian Federal Program “Integration” (Projects: 2.1.-855, A0-113, and B0-115), and Russian Found of Basic Research (Grant 98-03-32593a). Authors are thankful to L.S. Bresler (Saint-Petersburg) for his help in the article preparation and Prof. J. Šesták (University of West Bohemia in Pilsen) for intriguing discussions about some problems of self-organization and thermal analysis of fractals. We would like also to express our keen appreciation to G. Wiese and K.A. Burkov for their mutual understanding which enabled to investigate in Leningrad State University the signs of discrete solvation in aqueous solutions by the use of precision dilatometer received as a gift from Freie Universität in West Berlin. Chemical materials science capable of distinguishing among consuming, combustion, and deflagration grew up on this ground owing to an introduction into random geometry from A.L. Efros [Physics and geometry of disorder. Moscow: Nauka; 1982 (in Russian)––Moscow: Mir; 1986 (in English)––Moscow: Mir; 1987 (in Spanish)––Tallinn: Valgus; 1987 (in Estonian)]. We remember it with thankfulness. This paper is dedicated to the memory of academician Yu. D. Tret’yakov, A.K. Gamazov, the teacher of the 42nd middle school in Tbilisi (GE-SU), and our parents, Victor & Emilia.

Supplementary material

10973_2014_4351_MOESM1_ESM.pdf (671 kb)
Supplementary material 1 (PDF 671 kb)


  1. 1.
    Das Bertelsmann Lexicon. Gütersloh: Bertelsmann Lexicon-Verlag; 1972–1982.Google Scholar
  2. 2.
    Chemical Encyclopedia. Moscow: Sovetskaya Entsiklopediya––Bolshaya Russkaya Entsiklopediya; 1988–1995, (in Russian).Google Scholar
  3. 3.
    The New Encyclopedia Britannica. Macropedia, vol. 4. 15th ed. Chicago: Encyclopedia Britannica, Inc.; 1976. p. 173.Google Scholar
  4. 4.
    Godman A, Payne EMF. Longman dictionary of scientific usage. Moscow: Russian Language––Harlow: Longman; 1987. p. 612.Google Scholar
  5. 5.
    McGraw-Hill encyclopedia of science and technology. Vol. 18. New York: McGraw-Hill, Inc.; 1992. p. 478.Google Scholar
  6. 6.
    The New Encyclopedia Britannica. Micropædia, vol. 11. 15th ed. Chicago: Encyclopedia Britannica, Inc; 1993. p. 896.Google Scholar
  7. 7.
    Lebesgue H. On the measurement of values. L’Enseign Math. 1932;31:173–206 (in French).Google Scholar
  8. 8.
    Klyucharev VV. Fractal images of chemical transformations. Dokl Chem. 2003;390(1–3):127–30.Google Scholar
  9. 9.
    Klyucharev VV. Classical geometry of matter in the state of fractional dimension. Glass Phys Chem. 2008;34(6):660–5.Google Scholar
  10. 10.
    Burnsley MF, Devaney RL, Mandelbrot BB, Peitgen HO, Saupe D, Voss RF. The science of fractal images. Peitgen HO, Saupe D, editors. New York: Springer-Verlag; 1988.Google Scholar
  11. 11.
    Shenker OR. Fractal geometry is not the geometry of nature. Stud Hist Philos Sci A. 1994;25(6):967–81.Google Scholar
  12. 12.
    Rouvray DH. The geometry of nature. Endeavour. 1996;20(2):79–85.Google Scholar
  13. 13.
    Avnir D, Biham O, Lidar D, Malcai O. Is the geometry of nature fractal? Science. 1998;279(5347):39–40.Google Scholar
  14. 14.
    Jelinek HF, Jones CL, Warfel MD, Lucas C, Depardieu C, Aurel G. Understanding fractal analysis? The case of fractal linguistics. Complexus. 2006;3(1–3):66–73.Google Scholar
  15. 15.
    Kopelman R. Fractal reaction kinetics. Science. 1988;241(4873):1620–6.Google Scholar
  16. 16.
    Pfeifer P, Avnir D. Chemistry in non-integer dimensions between 2 and 3. I. Fractal theory of heterogeneous surfaces. J Chem Phys. 1983;79(7):3558–65.Google Scholar
  17. 17.
    Pfeifer P, Avnir D. Chemistry in non-integer dimensions between 2 and 3. II. Fractal surfaces of adsorbents. J Chem Phys. 1983;79(7):3566–71.Google Scholar
  18. 18.
    Avnir D, editor. Fractal approach to heterogeneous chemistry: surfaces, colloids, polymers. Chichester: Wiley; 1989.Google Scholar
  19. 19.
    Schroeder M. Fractals, chaos, power laws: minutes from an infinite paradise. New York: W.H. Freeman and Company; 1991.Google Scholar
  20. 20.
    Novak MM, editor. Emergent nature: patterns, growth and scaling in the sciences. New Jersey: World Scientific Publishing Co. Ptc. Ltd.; 2002.Google Scholar
  21. 21.
    Novak MM, editor. Thinking in patterns: fractals and related phenomena in nature. New Jersey: World Scientific Publishing Co. Ptc. Ltd.; 2004.Google Scholar
  22. 22.
    Lévy-Véhel J, Lutton E, editors. Fractals in engineering: new trends in theory and applications. London: Springer-Verlag London Limited; 2005.Google Scholar
  23. 23.
    Šesták J. Science of heat and thermophysical study. Amsterdam: Elsevier; 2005.Google Scholar
  24. 24.
    Novak MM, editor. Complexus mundi: Emergent patterns in mature. New Jersey: World Scientific Publishing Co. Ptc. Ltd.; 2006.Google Scholar
  25. 25.
    Orlik M. Self-organization in electrochemical systems I. General principles of self-organization. Temporal instabilities. Berlin: Springer-Verlag; 2012 (Monographs in Electrochemistry).Google Scholar
  26. 26.
    Šesták J, Šimon P, editors. Thermal analysis of micro-, nano-, and non-crystalline materials: transformation, crystallization, kinetics and thermodynamics. Dordrecht: Springer Science+Business Media; 2013 (Hot topics in thermal analysis and calorimetry. V. 9.).Google Scholar
  27. 27.
    Lehn JM. Toward self-organization and complex matter. Science. 2002;295(5564):2400–3.Google Scholar
  28. 28.
    Lehn JM. Toward complex matter: supramolecular chemistry and self-organization. Proc Natl Acad Sci USA. 2002;99(8):4763–8.Google Scholar
  29. 29.
    Lehn JM. Supramolecular polymer chemistry––scope and perspectives. Polym Int. 2002;51(10):825–39.Google Scholar
  30. 30.
    Lehn JM. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem Soc Rev. 2007;36(2):151–60.Google Scholar
  31. 31.
    Mendeleev DI. Investigation of aqueous solutions by specific weight. Saint-Petersburg: Tipografiya V. Demakova; 1887 (in Russian).Google Scholar
  32. 32.
    Ermakov VI. Investigations of electrolyte solutions by the electrostatic magnetic relaxation and radio-spectroscopy methods. D.S. Thesis. Moscow: Moscow Institute of Chemical Technology (MKHTI); 1976 (in Russian).Google Scholar
  33. 33.
    Daniell PJ. The theory of flame motion. Proc R Soc A. 1930;126(208):393–405.Google Scholar
  34. 34.
    Silin NA, editor. Sheludyak YE, Kashporov LY, Malinin LY, Tsalkov VN. Thermo-physical properties of the components of combustible systems. Moscow: NPO InformTEI; 1992, p. 153–78 (in Russian).Google Scholar
  35. 35.
    Rogachev AS. Macrokinetics of gasless combustion: old problems and new approaches. Int J Self Propag High Temp Synth. 1997;6(2):215–42.Google Scholar
  36. 36.
    Knyazeva AG, Sorokova SN. Steady regimes of conversion in a viscoelastic medium. Combust Explos Shock Waves. 2006;42(5):549–58.Google Scholar
  37. 37.
    MacCallum JR, Tanner J. Derivation of rate equations used in thermogravimetry. Nature. 1970;225(5238):1127–8.Google Scholar
  38. 38.
    Prime RB. Differential scanning calorimetry of the epoxy cure reaction. Polym Eng Sci. 1973;13(5):365–71.Google Scholar
  39. 39.
    Klyucharev VV, Razumova AP, Aleshin VV. Rate of conversion of a chemical substance under non-isothermal conditions. Inorg Mater. 1994;30(3):398–400.Google Scholar
  40. 40.
    Kozlov GV, Zaikov GE. Physical meaning of reaction rate constant in Euclidean and fractal spaces by the example of thermal oxidative degradation of polymers. Theor Found Chem Eng. 2003;37(5):521–3.Google Scholar
  41. 41.
    Smirnov BM. A tangle of fractal fibers as a new state of matter. Phys Uspekhi. 1991;34(8):711–6.Google Scholar
  42. 42.
    Abrahamson J, Dinniss J. Ball lightning caused by oxidation of nanoparticle networks from normal lightning strikes on soil. Nature. 2000;403(6769):519–21.Google Scholar
  43. 43.
    Bychkov AV, Bychkov VL, Abrahamson J. On the energy characteristics of ball lightning. Philos Trans R Soc Lond A. 2002;360(1790):97–106.Google Scholar
  44. 44.
    Bychkov VL, Nikitin AI, Dijkhuis GC. Ball lightning investigations. In: Bychkov V, Golubkov G, Nikitin A, editors. The Atmosphere and ionosphere: dynamics, processes and monitoring. New York: Springer-Verlag; 2010. p. 201–73.Google Scholar
  45. 45.
    Shabanov OD, Lightning ball: experiments on creation and hypotheses (comment on “Energy density calculations for ball-lightning-like luminous silicon balls” by G.S. Paiva, J.V. Ferreira, C.C. Bastos, M.V.P. des Santos, A.C. Paväo). Phys Uspekhi. 2010;53(2):215–6.Google Scholar
  46. 46.
    Wax SG, Fischer GM, Sands RR. The past, present, and future of DARPA’s investment strategy in smart materials. J Miner Met Mater Soc (JOM). 2003;55(12):17–23.Google Scholar
  47. 47.
    Klyucharev VV. Dimensions of becoming of self-propagating chemical processes. Dokl Chem. 2006;410(1):158–64.Google Scholar
  48. 48.
    Schummer J. The notion of nature in chemistry. Stud Hist Philos Sci A. 2003;34(4):705–36.Google Scholar
  49. 49.
    Day P, Interrante LV, West AR. Toward defining materials chemistry. Pure Appl Chem. 2009;81(9):1707–17.Google Scholar
  50. 50.
    Hill J, Verma RK, Kumar DD. Challenges for chemical education: traversing the chemical science/materials science interface. J Mater Educ. 2013;35(1–2):1–16.Google Scholar
  51. 51.
    Merzhanov AG. The chemistry of self-propagating high-temperature synthesis. J Mater Chem. 2004;14(2):1779–86.Google Scholar
  52. 52.
    Kubota N. Propellants and explosives: thermochemical aspects of combustion. Weinheim: Wiley-VCH; 2002.Google Scholar
  53. 53.
    Šimon P. Fourty years of the Šesták-Berggren equation. Thermochim Acta. 2011;520(1–2):156–7.Google Scholar
  54. 54.
    Karlov NV, Kirichenko NA, Luk’yanchuk BS. Laser thermochemistry: fundamentals and applications, Chapter 9. Cambridge: Cambridge International Science Publishing; 1999.Google Scholar
  55. 55.
    Koga N, Tanaka H. The physico-geometric approach to the kinetics of solid-state reactions as exemplified by the thermal dehydration and decomposition of inorganic solids. Thermochim Acta. 2002;388(1–2):41–61.Google Scholar
  56. 56.
    Kimura T, Koga N. Thermal dehydration of monohydrocalcite: overall kinetics and physico-geometrical mechanisms. J Phys Chem A. 2011;115(38):10491–501.Google Scholar
  57. 57.
    Wada T, Koga N. Kinetics and mechanism of the thermal decomposition of sodium percarbonate: role of the surface product layer. J Phys Chem A. 2013;117(9):1880–9.Google Scholar
  58. 58.
    Mallard E, Le Châtelier AL. Experimental and theoretical investigations for the combustion of gaseous explosive mixtures. First part. The self-ignition temperature of gaseous mixtures. Ann Mines. 1883;4(5):276–95 (in French).Google Scholar
  59. 59.
    Mikhelson VA. On the normal velocity of inflammation of detonating gaseous mixtures. Uch Zapiski Mosk Imp Univ. 1893;10:1–92 (in Russian).Google Scholar
  60. 60.
    Manson N. Mikhelson V.A. Theory of detonation wave. (Presentation on the international conference dedicated to 100th anniversary of the 1st publication of Mikhelson V.A., September 17–21, Moscow). Khim Fiz. 1992;11(2):248–57 (in Russian).Google Scholar
  61. 61.
    Klyucharev VV. Becoming random close packing. Glass Phys Chem. 2010;36(4):463–9.Google Scholar
  62. 62.
    Koga N, Goshi Y, Yoshikawa M, Tatsuoka T. Physico-geometrical kinetics of solid state reactions in an undergraduate thermal analysis laboratory. J Chem Educ. 2014;91(2):239–45.Google Scholar
  63. 63.
    Bray WC. A periodic reaction in homogeneous solution and its relation to catalysis. J Am Chem Soc. 1921;43(6):1262–7.Google Scholar
  64. 64.
    Kühnert L, Niedersen U, selection, introduction, commentary. Self-organization of chemical structures; Works of Friedlieb Ferdinand Runge, Raphael Eduard Liesegang, Boris Pavlovich Belousov, Anatol Markovich Zhabotinsky. Leipzig: Akademische Verlagsgesellschaft Geest and Portig K.-G.; 1987 (in German). (Ostwalds Klassiker der exakten Naturwissenschaften. Bd. 282.).Google Scholar
  65. 65.
    Zaikin AN, Zhabotinsky AM. Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature. 1970;225(5232):535–7.Google Scholar
  66. 66.
    Castets V, Dulos E, Boissonade J, de Kepper P. Experimental evidence of a sustained standing Turing-type nonequilibrium chemical patterns. Phys Rev Lett. 1990;64(24):2953–6.Google Scholar
  67. 67.
    Winfree AT, Strogatz SH. Organizing centres for three-dimensional chemical waves. Nature. 1984;311(5987):611–5.Google Scholar
  68. 68.
    Winfree AT, Caudle S, Chen G, McGuire P, Szilagyi Z. Quantitative optical tomography of chemical waves and their organizing centers. Chaos. 1996;6(4):617–26.Google Scholar
  69. 69.
    Pertsov A, Vinson M, Müller SC. Three-dimensional reconstruction of organizing centers in excitable chemical media. Phys D. 1993;63(1–2):233–40.Google Scholar
  70. 70.
    Konotop IY, Nasimova IR, Rambidi NG, Khokhlov AR. Chemomechanical oscillations in polymer gels: effect of the size of samples. Polym Sci B. 2011;53(1–2):26–30.Google Scholar
  71. 71.
    Guo DM, Li YF, Zheng B. A microreactor and imaging platform for studying chemical oscillators. J Phys Chem A. 2013;117(30):6402–8.Google Scholar
  72. 72.
    Zhou HW, Ding XB, Zheng ZH, Peng YX. Self-regulated intelligent systems: where adaptive entities meet chemical oscillators. Soft Matter. 2013;9(20):4956–68.Google Scholar
  73. 73.
    Yoshida R, Ueki T. Evolution of self-oscillating polymer gels as autonomous polymer systems. NPG Asia Mater. 2014;6(6):e107.Google Scholar
  74. 74.
    Bánsági T, Vanag VK, Epstein IR. Tomography of reaction-diffusion microemulsions reveals three-dimensional Turing patterns. Science. 2011;331(6022):1309–12.Google Scholar
  75. 75.
    Epstein IR. Coupled chemical oscillators and emergent system properties. Chem Commun. 2014;50(74):10758–67.Google Scholar
  76. 76.
    Bokii GB, Laptev VI. Specific features of application of the mole to the crystalline state of matter. J Struct Chem. 1991;32(3):315–20.Google Scholar
  77. 77.
    Laptev VI, Bokii GB. Crystal-chemical mechanism in the fundamental absorption of MgO crystal. J Struct Chem. 1996;37(2):247–51.Google Scholar
  78. 78.
    Fang SC, Hart C, Clarke D. Unpacking the meaning of the mole concept for secondary school teachers and students. J Chem Educ. 2014;91(3):351–6.Google Scholar
  79. 79.
    Nekrasov BV. Fundamentals of general chemistry, vol. 1. 3rd ed. Moscow: Khimiya; 1973. p. 66 (in Russian).Google Scholar
  80. 80.
    Masterton WW, Hurley CN, Neth EJ. Chemistry: principles and reactions. 7th ed. Singapore: Brooks/Cole, Cengage Learning; 2012. p. 61.Google Scholar
  81. 81.
    Burdge J. Chemistry. 2nd ed. New York: The McGraw-Hill Companies, Inc.; 2011. p. 86.Google Scholar
  82. 82.
    Stávek J, Šípek M. Interpretation of periodic precipitation pattern formation by the concept of quantum mechanics. Cryst Res Technol. 1995;30(8):1033–49.Google Scholar
  83. 83.
    Stávek J, Šípek M, Šesták J. The application of the principle of least action to some self-organized chemical reactions. Thermochim Acta. 2002;388(1–2):441–50.Google Scholar
  84. 84.
    Mareš JJ, Stávek J, Šesták J. Quantum aspects of self-organized periodic chemical reactions. J Chem Phys. 2004;121(3):1499–503.Google Scholar
  85. 85.
    Mareš JJ, Šesták J, Stávek J, Ševčiková H, Krištofik J, Hubík P. Do periodic chemical reactions reveal Fürth’s quantum diffusion limit? Phys E. 2005;29(1–2):145–9.Google Scholar
  86. 86.
    Mareš JJ, Šesták J, Hubík P. Transport constitutive relations, quantum diffusion and periodic reactions. In: Šesták J, Mareš JJ, Hubík P, editors. Glassy, amorphous and nano-crystalline materials. Thermal physics, analysis, structure and properties. Dordrecht: Springer Science+Business Media B.V.; 2011. p. 227–44. (Hot topics in thermal analysis and calorimetry. V. 8.).Google Scholar
  87. 87.
    Skorobogatov GA, Kamenskii AV. The mechanism of spatially periodic reactions. Vestnik Sankt-Peterburg Univ Ser 4. 2006;(1):55–75. (in Russian)Google Scholar
  88. 88.
    Leduc S. Physico-chemical theory of life and spontaneous generation, Chapter 6. Paris: A. Poinat. Ėditeur––Publications médicales et scientifiques; 1910. (in French).Google Scholar
  89. 89.
    Michaleff P, Nikiforoff W, Schemjakin FM. On a new regularity of periodic reactions in gels. Kolloid Z. 1934;66(2):197–200 (in German).Google Scholar
  90. 90.
    M. de Maupertuis. Accord between different laws of Nature, which have appeared as incompatible up to now. Mémoires de l’Académie Royale des Sciences; 1744. p. 417–426 (in French).Google Scholar
  91. 91.
    M. de Maupertuis. Laws of motion deduced from the Metaphysic principle. Histoire de l’Académie Royale des Sciences et des Belles Lettres de Berlin. Année 1746. Berlin: Ambroise Haude; 1748. p. 267–294 (in French).Google Scholar
  92. 92.
    Maupertuis P. Accord between different laws of Nature, which have appeared up to now as incompatible. In: Polak LS, editing, epilogue, footnotes. Variation principles of mechanics. Moscow: Fizmatlit; 1959. p. 23–30 (in Russian). (Collection of articles of science classics.).Google Scholar
  93. 93.
    Maupertuis P. Laws of motion deduced from the Metaphysic principle. In: Polak LS, editing, epilogue, footnotes. Variation principles of mechanics. Moscow: Fizmatlit; 1959. p. 41–55 (in Russian). (Collection of articles of science classics.).Google Scholar
  94. 94.
    Kalinin SV, Vertegel AA, Oleynikov NN, Tretyakov YD. Kinetics of solid state reactions with fractal reagents. J Mater Synth Process. 1998;6(5):305–9.Google Scholar
  95. 95.
    Ochiai M, Ozao R. Fundamental properties in fractal nature and thermal analysis of powders. J Therm Anal. 1992;38(8):1901–10.Google Scholar
  96. 96.
    Ozao R, Ochiai M. Fractal reaction in solids: reaction functions reconsidered. J Ceram Soc Jpn. 1993;101(3):263–7.Google Scholar
  97. 97.
    Ozao R, Ochiai M. Fractal nature and thermal analysis of powders. J Therm Anal. 1993;40(3):1331–40.Google Scholar
  98. 98.
    Šesták J, Málek J. Diagnostic limits of phenomenological models of heterogeneous reactions and thermal-analysis kinetics. Solid State Ion. 1993;63–65:245–54.Google Scholar
  99. 99.
    Koga N, Tanaka H. Accommodation of the actual solid-state process in the kinetic model function. J Therm Anal. 1994;41(2–3):455–69.Google Scholar
  100. 100.
    Koga N, Málek J. Accommodation of the actual solid-state process in the kinetic model function. Part 2. Applicability of the empirical kinetic model function to diffusion-controlled reactions. Thermochim Acta. 1996;282–283:69–80.Google Scholar
  101. 101.
    Segal E. Fractal approach in the kinetics of solid gas decompositions. J Therm Anal. 1998;52(2):537–42.Google Scholar
  102. 102.
    Segal E. Fractal approach in solid-state chemistry. Rev Roum Chim. 2002;47(8–9):701–3.Google Scholar
  103. 103.
    Dobrescu A, Segal EI. Fractal approach of nucleation in liquid and gas phases. J Therm Anal Calorim. 2005;81(1):145–7.Google Scholar
  104. 104.
    Segal E. Rate equations of solid state reactions. Euclidean and fractal models. Rev Roum Chim. 2012;57(4–5):491–3.Google Scholar
  105. 105.
    Matyjewicz M, Staszczuk P. Fractal dimensions from Q-TG data for estimation of surface heterogeneity. J Therm Anal Calorim. 2003;74(2):413–22.Google Scholar
  106. 106.
    Šesták J. Modeling the reaction mechanism: the use of Euclidean and fractal geometry. In: Šesták J, editor. Science of heat and thermophysical study. Amsterdam: Elsevier; 2005.Google Scholar
  107. 107.
    Koga N, Šesták J. Influence of preliminary nucleation on the physicogeometric kinetics of glass crystallization. In: Šesták J, Šimon P, editors. Thermal analysis of micro-, nano- and non-crystalline materials. Dordrecht: Springer Science+Business Media; 2013. p. 209–23 (Hot topics in thermal analysis and calorimetry. V. 9.).Google Scholar
  108. 108.
    Šimon P, Zmeškal O, Šesták J. Fractals in solid-state processes. In: Šesták J, Šimon P, editors. Thermal analysis of micro-, nano- and non-crystalline materials. Dordrecht: Springer Science+Business Media Dordrecht; 2013. p. 247–55 (Hot topics in thermal analysis and calorimetry. V. 9.).Google Scholar
  109. 109.
    Fini A, Fazio G, Holgado MA, Fernandez-Hervas MJ. Fractal and reactive dimensions of some ursodeoxycholic acid salts. Int J Pharm. 1998;171(1):45–52.Google Scholar
  110. 110.
    Bao L, Ma J, Long WM, He P, Zhang TA, Nguyen AV. Fractal analysis in particle dissolution: a review. Rev Chem Eng. 2014;30(3):261–87.Google Scholar
  111. 111.
    Niederquell A, Kuentz M. Biorelevant dissolution of poorly soluble weak acids studied by UV imaging reveals ranges of fractal-like kinetics. Int J Pharm. 2014;463(1):38–49.Google Scholar
  112. 112.
    Shimakawa K. Dynamics of crystallization with fractal geometry: extended KJMA approach in glasses. Phys Status Solidi B. 2012;249(10):2024–7.Google Scholar
  113. 113.
    Svoboda R, Brandová D, Málek J. Crystallization behavior of GeSb2Se4 chalcogenide glass. J Non-Cryst Solids. 2014;368:46–54.Google Scholar
  114. 114.
    Pippa N, Gardikis K, Pispas S, Demetzos C. The physicochemical/thermodynamic balance of advanced drug liposomal delivery systems. J Therm Anal Calorim. 2014;116(1):99–105.Google Scholar
  115. 115.
    Plonka A. Recent developments in dispersive kinetics. Prog React Kinet Mech. 2000;25(2):109–217.Google Scholar
  116. 116.
    Janković B, Stopić S, Güven A, Friedrich B. The application of the formalism of dispersive kinetics for investigation of the isothermal decomposition of zinc leach residue in an inert atmosphere. Thermochim Acta. 2012;546:102–112.Google Scholar
  117. 117.
    Izotov AD, Gorichev IG, Pankratov DV. Probabilistic and fractal approaches to deriving rater equations for heterogeneous oxide dissolution processes. Inorg Mater. 2010;46(6):660–7.Google Scholar
  118. 118.
    Šesták J. Rationale and fallacy of thermoanalytical kinetic patterns. J Therm Anal Calorim. 2012;110(1):5–16.Google Scholar
  119. 119.
    Chua LO. The origin of complexity. In: Novak MM, editor. Paradigms of complexity: fractals and structures in the science. Singapore: World Scientific Publishing Co. Ptc. Ltd; 2000. p. 1–24.Google Scholar
  120. 120.
    Dolganov PV, Dolganov VK, Cluzeau P. Behavior of inclusions with different value and orientation of topological dipoles in ferroelectric smectic films. J Exp Theor Phys. 2009;109(1):169–75.Google Scholar
  121. 121.
    Dolganov PV, Kats EL, Dolganov VK, Cluzeau P. Dimer structures formed in smectic films by inclusions with parallel antiparallel topological dipole moments. JETP Lett. 2009;90(5):382–6.Google Scholar
  122. 122.
    Tasinkevych M, Andrienko D. Colloidal particles in liquid crystal films and at interfaces. Condens Matter Phys. 2010;13(3):33603.Google Scholar
  123. 123.
    Lagerwall JPF, Scalia G. A new era for liquid crystal research: applications of liquid crystals in soft matter nano-, bio- and microtechnology. Curr Appl Phys. 2012;12(6):1387–412.Google Scholar
  124. 124.
    Frolov YV, Pivkina AN. Fractal structures and features of energy release (combustion) processes in heterogeneous condensed systems. Combust Explos Shock Waves. 1997;33(5):513–27.Google Scholar
  125. 125.
    Varma A, Rogachev AS, Mukasyan AS, Hwang S. Complex behavior of self-propagating reaction waves in heterogeneous media. Proc Natl Acad Sci USA. 1998;95(19):11053–8.Google Scholar
  126. 126.
    Mukasyan AS, Rogachev AS. Discrete reaction waves: gasless combustion of solid powder mixtures. Prog Energy Combust Sci. 2008;34(3):377–416.Google Scholar
  127. 127.
    Zivonitko VV, Koptyug IV, Sagdeev RZ. Temperature changes visualization during chemical wave propagation. J Phys Chem A. 2007;11(20):4122–4.Google Scholar
  128. 128.
    Koptyug IV. Magnetic resonance imaging methods in heterogeneous catalysis. In: Douthwaite R, Duckett S, Yarwood J, editors. Spectroscopic properties of inorganic and organometallic compounds. V. 45 L.: R Soc Chem; 2014. p. 1–42.Google Scholar
  129. 129.
    Zeldovich YB, Frank-Kamenetskii DA. A theory of thermal propagation of flame. Acta Physicochim URSS. 1938;9:341–50.Google Scholar
  130. 130.
    Zeldovich Y. Flame propagation in a substance reacting an initial temperature. Combust Flame. 1980;39(3):219–24.Google Scholar
  131. 131.
    Rogachev AS, Mukasyan AS. Combustion for materials synthesis: introduction into structural macrokinetics, Chapter 3.3. Moscow: Fizmatlit; 2013 (in Russian).Google Scholar
  132. 132.
    Klyucharev VV, The topological reform of combustion science. In: XI international symposium of self-propagating high temperature synthesis. Book of abstracts. Athens: NCSR “Demokritos”; 2011. p. 217.
  133. 133.
    Fur ZI. Relaxation mechanism pf combustion propagation in heterogeneous exothermic systems. I. Zh Fiz Khim. 1960;34(3):611–7 (in Russian).Google Scholar
  134. 134.
    Fur ZI. Relaxation mechanism of combustion propagation in heterogeneous exothermic systems. II. Zh Fiz Khim. 1960;34(6):1299–306 (in Russian).Google Scholar
  135. 135.
    Belyaev AF. On the relaxation mechanism of combustion propagation in heterogeneous exothermic systems (critical comments on the Z.I. Fur’s papers). Zh Fiz Khim. 1960;34(6):1373–8 (in Russian).Google Scholar
  136. 136.
    Mandelbrot BB. The fractal geometry of nature. New York: W.H. Freeman and Company; 1983.Google Scholar
  137. 137.
    Addison PS. Fractals and chaos: an illustrated course. Bristol and Philadelphia: IOP Publishing Ltd.; 1997.Google Scholar
  138. 138.
    Lorenzen S. Can fractals are suited for the understanding of nature? In: Komorek M, Duit R, Schnegelberger M, editors. Fractals in teaching: on the didactic meaning of fractal concepts. Kiel: Leibniz-Institute for Science Education (IPN); 1998. p. 295–308. (in German).Google Scholar
  139. 139.
    Kottwitz DA. The densest packing of equal circles on a sphere. Acta Cryst A. 1991;47(3):158–65.Google Scholar
  140. 140.
    Sloane NJA, Hardin RH, Smith WD. Tables of spherical codes. 2000.
  141. 141.
    Mutoh N. The polyhedra of maximal volume inscribed in the unit sphere and of minimal volume circumscribed about the unit sphere. Lecture Notes in Computer Science. 2003;2866:204–14Google Scholar
  142. 142.
    Gillespie RJ. Molecular geometry. London: Van Nostrand Reinhold; 1972.Google Scholar
  143. 143.
    Kausch HH, Fesco DG, Tschoegl NW. The random packing of circles in a plane. J Colloid Interface Sci. 1971;37(3):603–11.Google Scholar
  144. 144.
    Rouille L, Missiaen JM, Thomas G. Collective random packing of disks in a plane under the influence of a weak central force. J Phys Condens Matter. 1990;2(13):3041–51.Google Scholar
  145. 145.
    Scott GD, Kilgour DM. The density of random close packing of spheres. J Phys D. 1969;2(6):863–6.Google Scholar
  146. 146.
    Finney JL. Random packings and the structure of simple liquids. I. The geometry of random close packing. Proc R Soc A. 1970;319(1539):479–93.Google Scholar
  147. 147.
    Jodrey WS, Tory EM. Computer-simulation of close random packing of equal spheres. Phys Rev A. 1985;32(4):2347–51.Google Scholar
  148. 148.
    Torquato S, Truskett TM, Debenedetti PG. Is random close packing of spheres well defined? Phys Rev Lett. 2000;84(10):2064–7.Google Scholar
  149. 149.
    Lord EA, Mackay AL, Ranganathan S. New geometries for new materials. Cambridge: Cambridge University Press; 2006.Google Scholar
  150. 150.
    Torquato S, Stillinger FH. Jammed hard-particle packings: from Kepler to Bernal and beyond. Rev Mod Phys. 2010;82(3):2633–72.Google Scholar
  151. 151.
    Jiao Y, Stillinger FH, Torquato S. Nonuniversality of density and disorder in jammed sphere packings. J Appl Phys. 2011;109(1):013508.Google Scholar
  152. 152.
    Muñoz DV. Particle dynamics in repulsive and attractive colloidal dispersions: a study in a quasi-two dimensional system. D.G. Thesis. Breisgau: Universität Freiburg; 2010.
  153. 153.
    Kapfer SC, Mickel W, Mecke K, Schröder-Turk GE. Jammed spheres: Minkowski tensors reveal onset of local crystallinity. Phys Rev E. 2012;85(3):030301.Google Scholar
  154. 154.
    Ivanitskii GR, Medvinskii AB, Tsyganov MA. From disorder to order as applied to the movement of micro-organisms. Sov Phys Uspekhi. 1991;34(4):289–316.Google Scholar
  155. 155.
    Nicolis G, Prigogine I. Self-Organization in nonequilibrium systems: from dissipative structures to order through fluctuations. New York: Wiley; 1977.Google Scholar
  156. 156.
    Martyushev SM, Seleznev D. Maximum entropy production principle in physics, chemistry and biology. Phys Rep. 2006;426(1):1–45.Google Scholar
  157. 157.
    Lucia U. Maximum or minimum entropy generation for open systems? Phys A. 2012;391(12):3392–8.Google Scholar
  158. 158.
    Adams S, Dirr N, Peletier M, Zimmer J. Large deviations and gradient flows. Philos Trans R Soc A. 2005;2013(371):20120341.Google Scholar
  159. 159.
    Verhás J. Gyarmati’s variational principle of dissipative processes. Entropy. 2014;16(4):2362–83.Google Scholar
  160. 160.
    Fischer FD, Svoboda J, Petryk H. Thermodynamic extremal principles for irreversible processes in materials science. Acta Mater. 2014;67:1–20.Google Scholar
  161. 161.
    Reis AH. Use and validity of principles of extremum of entropy production in the study of complex systems. Ann Phys. 2014;346:22–7.Google Scholar
  162. 162.
    Bensah YD, Sekhar JA. Morphological assessment with maximum entropy production rate (MEPR) postulate. Curr Opin Chem Eng. 2014;3:91–8.Google Scholar
  163. 163.
    Klyucharev VV, Klyuchareva SV. Combustion science for sustainable development. In: Sakharov readings 2012. Environmental problems of the XXI Century. Minsk: Sakharov ISEU; 2012. p. 75–6.Google Scholar
  164. 164.
    Shafirovich E, Mukasyan AS, Varma A, Kshirsagar G, Zhang Y, Cannon JC. Mechanism of combustion in low-exothermic mixtures of sodium chlorate and metal fuel. Combust Flame. 2002;128(1–2):133–44.Google Scholar
  165. 165.
    Shafirovich E, Garcia A, Narayana Swamy AK, Mast DJ, Hornung SD. On feasibility of decreasing metal fuel content in chemical oxygen generators. Combust Flame. 2012;159(1):420–6.Google Scholar
  166. 166.
    Nishiyama K, Ono T, Nakayama A, Sakai H, Koishi M, Abe M. Nano-atomization of titanium diboride using ordered mixture and metallothermic reaction methods. Surf Coat Int B. 2003;86(3):169–74.Google Scholar
  167. 167.
    Ohkubo T, Nishiyama K, Ono T, Niwa S, Kohno T, Sakai H, Koishi M, Abe M. Nano-atomization of titanium diboride using function-building fine particle preparation method. J Jpn Soc Powder Powder Metall. 2005;52(1):3–9 (in Japanese).Google Scholar
  168. 168.
    Ohkubo T, Sakai H, Abe M, Nishyama K. Preparation of hard nanoceramics of borides and functionalization of titania by metallothermic reduction method. J Jpn Soc Powder Powder Metall. 2007;54(4):251–9 (in Japanese).Google Scholar
  169. 169.
    Nersisyan HH, Lee HH, Won CW. Self-propagating high-temperature synthesis of nano-sized titanium carbide. J Mater Res. 2002;17(11):2859–64.Google Scholar
  170. 170.
    Won CW, Hersisyan HH, Won HI, Lee JH. Refractory metal nanopowders: synthesis and characterization. Curr Opin Solid State Mater Sci. 2010;14(3–4):53–68.Google Scholar
  171. 171.
    Niu J, Yi XM, Saito G, Akiyama T. A new route to synthesize β-SiAlON:Eu2+ phosphors for white light-emitting diodes. Appl Phys Express. 2013;6(4):042105.Google Scholar
  172. 172.
    Liu GH, Li JT, Chen KX. Combustion synthesis of refractory and hard materials: a review. Int J Refract Met Hard Mater. 2013;39(7):90–102.Google Scholar
  173. 173.
    Klyucharev VV, Ryabov AN, Vakulenko AA. Thermal nature of self-propagating chemical percolation. In: Proceedings of the international annual conference Fraunhofer ICT. 1997;28:44-1–44-13.Google Scholar
  174. 174.
    Lemesheva DG, Rosolovskii VY. Method of producing harmless calcium peroxide. Appl. SU. 1281507. 07.01.1987 (in Russian).Google Scholar
  175. 175.
    Klyucharev VV, Sinelnikov SM, Razumova AP, Sasnovskaya VD. Thermal analysis of binary mixtures of CaO, CaO2, Ca(OH)2, and Mg(OH)2 with sodium and potassium perchlorates. Russ Chem Bull. 1996;45(1):26–31.Google Scholar
  176. 176.
    Volnov II, Chamova VN, Sergeeva VP, Latysheva VI. A study of the synthesis of superoxides of alkaline-earth metals. J Inorg Chem USSR. 1956;1(9):1–7.Google Scholar
  177. 177.
    Ivanov VM, Semenenko KA, Prokhorova GV, Simonov EF. Sodium. Moscow: Nauka; 1986. p. 56 (in Russian).Google Scholar
  178. 178.
    Schechter WH, Miller RR, Bovard RM, Jackson CB, Pappenheimer JR. Chlorate candles as a source of oxygen. J Am Chem Soc. 1950;42(11):2348–53.Google Scholar
  179. 179.
    Markowitz MM, Borita DA, Stewart H. Lithium perchlorate oxygen candle. Pyrochemical source of pure oxygen. Ind Eng Chem Prod Res Dev. 1964;3(4):321–30.Google Scholar
  180. 180.
    Logunov AT, Smirnov IA, Martyntsev PP, Shapovalov VV, Vanin VI., Maslyaev VS. Oxygen generator. Patent US. 5733508. 31.03.1998.Google Scholar
  181. 181.
    Kopytov YF, Simanenkov SI. Solid oxygen source. Patent RU. 2152350. 10.07.2000 (in Russian).Google Scholar
  182. 182.
    Rosolovskii VY, Nikitina ZK, Sinelnikov SM. Interaction of LiClO4 and Ca(ClO4)2 with sodium supeoxide and peroxide. Russ J Inorg Chem. 1995;40(1):4–9.Google Scholar
  183. 183.
    Shapovalov VV. Thermo-graphic investigation of interaction of peroxide compounds of sodium with magnesium perchlorate. Ukr Khim Zh. 2000;66(2):24–9 (in Russian).Google Scholar
  184. 184.
    Thompson TL. Chemical oxygen generator. Patent US. 3702305. 07.11.1972.Google Scholar
  185. 185.
    Heintz CE. Cobalt oxide chlorate candle. Patent US. 4073741. 14.02.1978.Google Scholar
  186. 186.
    Han XU. Method for producing oxygen by microwave heated oxygen candle and oxygen candle and microwave device. Patent CN. 1962415. 16.05.2007 (in Chinese).Google Scholar
  187. 187.
    Zharkov AS, Shandakov VA, Pilyugin LA, Van den Berg RP. Cold oxygen chemical gas generator. Appl. WO. 03009899. 06.02.2003.Google Scholar
  188. 188.
    Nikitina ZK, Babaeva VP, Krivtsov NV, Sasnovskaya VD, Rosolovskii VY. The formation and decomposition of the compound NaClO4·NaClO3 in the binary sodium perchlorate–sodium chlorate system. Russ J Inorg Chem. 1989;34(4):552–5.Google Scholar
  189. 189.
    Klyucharev V, Sinelnikov S, Razumova A, Sasnovskaya V. The cooperative processes of magnesium oxidation in perchlorate mixtures with oxide. In: Proceedings of the international annual conference Fraunhofer ICT. 1995;26:64-1–64-11.Google Scholar
  190. 190.
    Aleshin VV, Mikhailov YM. Spatial forms of a combustion wave in energetic heterogeneous systems. Combust Explos Shock Waves. 2008;44(4):425–30.Google Scholar
  191. 191.
    Glushko VP, et al., editors. Thermodynamic properties of individual substance, vol. 9. Moscow: Nauka; 1982 (in Russian).Google Scholar
  192. 192.
    Kelley KK. Contributions to the data on theoretical metallurgy. Part XIII. High temperature heat content, heat capacity, and entropy data for inorganic compounds. U.S. Bureau of Mines. Bull. 584. Washington: U.S. Government Printing Office; 1960.Google Scholar
  193. 193.
    Naumov GB, Ryzhenko BN, Khodakovskii IL. The handbook of thermodynamic values. Moscow: Atomizdat; 1971 (in Russian).Google Scholar
  194. 194.
    Hertz HG. Electrochemistry: a reformation of the basic principles. Berlin: Springer-Verlag; 1980. (Lecture Notes in Chemistry. N. 17.).Google Scholar
  195. 195.
    Sasnovskaya VD, Razumova AP. Oxidation of magnesium in the systems NaClO4–Mg––metal oxide (peroxide). Russ J Inorg Chem. 2006;51(9):1349–54.Google Scholar
  196. 196.
    Field RJ. A reaction periodic in time and space: a lecture demonstration. J Chem Educ. 1972;49(5):308–11.Google Scholar
  197. 197.
    Degn H. Oscillating chemical reactions in homogeneous phase. J Chem Educ. 1972;49(5):302–7.Google Scholar
  198. 198.
    Briggs TS, Rauscher WC. An oscillating iodine clock. J Chem Educ. 1973;50(7):496.Google Scholar
  199. 199.
    Winfree AT. The prehistory of the Belousov–Zhabotinsky oscillator. J Chem Educ. 1984;61(8):661.Google Scholar
  200. 200.
    Noyes RM. Some models of chemical oscillators. J Chem Educ. 1989;66(3):190–1.Google Scholar
  201. 201.
    Merino M, Franco A. Oscillating reactions and their applications to the didactic chemical demonstrations. Ann Quim. 1991;87(3):306–10 (in Spanish).Google Scholar
  202. 202.
    Schmitz G, Kolar-Anic L, Anic S, Cupic Z. The illustration of multistability. J Chem Educ. 2000;77(11):1502–5.Google Scholar
  203. 203.
    Furrow SD. A modified recipe and variations for the Briggs-Rauscher oscillating reaction. J Chem Educ. 2012;89(11):1421–4.Google Scholar
  204. 204.
    Burgoyne JH, Cohen L. The effect of drop size on flame propagation in liquid aerosols. Proc Roy Soc Lond A. 1954;225(1162):375–92.Google Scholar
  205. 205.
    Fechner MGT. On the turning of polarity in the simple chain. Schweigger’s J Chem Phys. 1828;23(2):129–51, (in German) (Schweigger’s Journal––Journal für Chemie und Physik).Google Scholar
  206. 206.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.Google Scholar
  207. 207.
    Holba P, Nevřiva M, Šesták J. Analysis of DTA curve and related calculation of kinetic data using computer technique. Thermochim Acta. 1978;23(2):223–31.Google Scholar
  208. 208.
    Holba P, Šesták J, Sedmidubský D. Heat transfer and phase transition in DTA experiments. In: Šesták J, Šimon P, editors. Thermal analysis of micro-, nano- and non-crystalline materials. Dordrecht: Springer Science+Business Media; 2013. p. 99–134 (Hot topics in thermal analysis and calorimetry. V. 9.).Google Scholar
  209. 209.
    Šesták J, Holba P. Heat inertia and temperature gradient in the treatment of DTA peaks. J Therm Anal Calorim. 2013;113(3):1633–43.Google Scholar
  210. 210.
    Holba P, Šesták J. Imperfections of Kissinger evaluation method and crystallization kinetics. Glass Phys Chem. 2014;40(5):486–95.Google Scholar
  211. 211.
    Šesták J, Holba P, Živković Ž. Doubts on Kissinger’s method of kinetic evaluation based on several conceptual models showing the difference between the maximum of reaction rate and the extreme of DTA-peak. J Min Metall B. 2014;50(1):77–81.Google Scholar
  212. 212.
    Šesták J. Is the original Kissinger equation obsolete today: not obsolete the entire non-isothermal kinetics. J Therm Anal Calorim. 2014;117(1):3–7.Google Scholar
  213. 213.
    Merzhanov AG, Barzykin VV, Shteinberg AS, Gontkovskaya VT. Methodological principles in studying chemical reaction kinetics under conditions of programmed heating. Thermochim Acta. 1977;21(3):301–32.Google Scholar
  214. 214.
    Sánchez-Rodríguez D, Eloussifi H, Farjas J, Roura P, Dammak M. Thermal gradients in thermal analysis experiments: criterions to prevent inaccuracies when determining sample temperature and kinetic parameters. Thermochim Acta. 2014;589:37–46.Google Scholar
  215. 215.
    Itoh Y. Method of bursting liquid fuel with calcium carbonate. Patent US. 3488129. 01.06.1970.Google Scholar
  216. 216.
    Scher H, Zallen R. Critical density in percolation processes. J Chem Phys. 1970;53(12):3759–61.Google Scholar
  217. 217.
    Yonezawa F, Sakamoto S, Hori M. Percolation in two-dimensional lattices. I. A technique for the estimation of thresholds. Phys Rev B. 1989;40(1):636–49.Google Scholar
  218. 218.
    Yonezawa F, Sakamoto S, Hori M. Percolation in two-dimensional lattices. II. The extent of universality. Phys Rev B. 1989;40(1):650–60.Google Scholar
  219. 219.
    Smith LN, Lobb CJ. Percolation in two-dimensional conductor-insulator networks with controllable anisotropy. Phys Rev B. 1979;20(9):3653–8.Google Scholar
  220. 220.
    Zallen R. The sixteen-percent solution: critical volume fraction for percolation. In: Phillips JC, Thorpe MF, editors. Phase transitions and self-organization in electronic and molecular networks. New York: Kluwer Academic/Plenum Publishers; 2001. p. 37–41.Google Scholar
  221. 221.
    Nan CW, Shen Y, Ma J. Physical properties of composites near percolation. Annu Rev Mater Res. 2010;40:131–51.Google Scholar
  222. 222.
    Watanabe Y, Torikai H, Ito A. Flame spread along a thin solid randomly distributed combustible and non-combustible areas. Proc Combust Inst. 2011;33:2449–55.Google Scholar
  223. 223.
    Isichenko MB. Percolation, statistical topography, and transport in random media. Rev Mod Phys. 1992;64(4):961–1043.Google Scholar
  224. 224.
    Kerstein AR, Low CK. Percolation in combusting sprays. I. Transition from cluster combustion to percolate combustion in non-premixed sprays. In: 19th Symposium. (Int.) on combustion. Pittsburgh, Pennsylvania: The Combustion Institute; 1982. p. 961–9.Google Scholar
  225. 225.
    Kerstein AR. Percolation in combusting sprays. II. Width of the percolate combustion zone. Combust Sci Technol. 1984;37(1–2):47–57.Google Scholar
  226. 226.
    Grant DM, Pugmire RJ, Fletcher TH, Kerstein AR. Chemical model of coal devolatilization using percolation lattice statistics. Energy Fuels. 1989;3(2):175–86.Google Scholar
  227. 227.
    Fletcher TH, Kerstein AR, Pugmire RJ, Grant DM. Chemical percolation model for devolatilization. 2. Temperature and heating rate effects on product yields. Energy Fuels. 1990;4(1):54–60.Google Scholar
  228. 228.
    Frolov YV, Pivkina AN, Nikolskii BE. Influence of the spatial structure of a reactive medium on heat liberation during formation of nickel and zirconium aluminide. Combust Explos Shock Waves. 1988;24(5):593–7.Google Scholar
  229. 229.
    Pivkina A, Frolov Yu. Heterogeneous solid mixtures combustion: influence of microstructure, In: Frolov SM, editor. Combustion, detonation, shock waves, Proceedings of the Zel’dovich Memorial. Vol. 2. Moscow: Russian Section of the Combustion Institute; 1994. p. 204–6.Google Scholar
  230. 230.
    Woodcock LV. Thermodynamic status of random close packing. Philos Mag. 2013;93(31–33):4159–73.Google Scholar
  231. 231.
    Mukasyan AS, Rogachev AS, Varma A. Mechanisms of reaction wave propagation during combustion synthesis of advanced materials. Chem Eng Sci. 1999;54(15–16):3357–67.Google Scholar
  232. 232.
    Madden PA, Heaton R, Aguado A, Jahn S. From first principles to materials properties. J Mol Struct Theochem. 2006;771(1–3):9–18.Google Scholar
  233. 233.
    Mason W. Wheeler RV The “uniform movement” during the propagation of flame. J Chem Soc. 1917;111–112(661):1044–57.Google Scholar
  234. 234.
    Morozov AD. Introduction to the theory of fractals. Nizhnii Novgorod: Izdatelstvo Nizhegorodskogo universiteta; 1999 (in Russian).Google Scholar
  235. 235.
    Barondess JA. On wondering. Acad Med. 2005;80(1):62–5.Google Scholar
  236. 236.
    Guliquic V. The wondering angels of the fractal art. In: Magnani L, Li P, editors. Model-based reasoning in science technology and medicine. Berlin: Springer-Verlag ; 2007. p. 333–45. (Studies in Computational Intelligence, V. 64.).Google Scholar
  237. 237.
    Téllez-Medina DI. Fractal geometry: a consolidated tool for imagination. Vitae. 2013;20(3):159–60. (Revista de la Facultad de Quimica Farmacéutica, Universidad de Antioquia).Google Scholar
  238. 238.
    Bonneau PR, Jarvis RF, Kaner RB. Rapid solid-state synthesis of materials from molybdenum-disufide to refractories. Nature. 1991;349(6309):510–2.Google Scholar
  239. 239.
    Bonneau P, Treece R, Gillan E, Rao L, Jarvis R, Wiley J, Kaner RB. Solid-state metathesis routes to layered transition-metal dichalcogenides and refractory materials. Abstr Pap Am Chem Soc. 1991;201:182-Inor.Google Scholar
  240. 240.
    Wiley JB, Bonneau PR, Treece RE, Jarvis RF, Gillan EG, Rao L, Kaner RB. Solid-state metathesis routes to layered transition-metal dichalcogenides and refractory materials. ACS Symp Ser. 1992;499:369–83.Google Scholar
  241. 241.
    Shapovalov VV, Gorokhovskii AN. Kinetics and mechanism of solid phase reactions that proceed in a regime of self-propagating low-temperature synthesis. In: Collection of reports of the International scientific and technical conference “Actual problems of fundamental sciences”. Moscow: Moscow State Technical University (MVTU); 1991. p. 48–9.Google Scholar
  242. 242.
    Gillan EG, Kaner RB. Synthesis of refractory ceramics via rapid metathesis reactions between solid-state precursors. Chem Mater. 1996;8(2):333–43.Google Scholar
  243. 243.
    Parkin IP. Solid state metathesis reaction for metal borides, silicides, pnictides and chalcogenides: ionic or elemental pathways. Chem Soc Rev. 1996;25(3):199–207.Google Scholar
  244. 244.
    Parkin IP. Solvent free reactions in the solid state: solid state metathesis. Transit Metal Chem. 2002;27(6):569–73.Google Scholar
  245. 245.
    Cudzilo S, Trzcinski WA, Dyjak S, Czugala M. Combustion synthesis of tantalum and tantalum nitride nanopowders. Biuletyn Wojskowej Akademii Techniczne (Biul WAT). 2008;57(3):39–48 (in Polish). Google Scholar
  246. 246.
    Won CW, Nersisyan HH, Won HI, Lee HH. Synthesis of nanosized silicon particles by a rapid metathesis reaction. J Solid State Chem. 2009;182(11):3201–6.Google Scholar
  247. 247.
    Gorokhovskii AN, Shapovalov VV. Self-propagating interaction of NiSO4 with peroxide compounds of sodium. Ukr Khim Zh. 1999;65(3–4):94–9 (in Russian).Google Scholar
  248. 248.
    Nikitina ZK, Rosolovskii VY. Interaction of sodium peroxide compounds with zinc, cadmium, manganese, cobalt, and nickel perchlorates. Russ J Inorg Chem. 1996;41(7):1031–4.Google Scholar
  249. 249.
    Makhaev VD, Borisov AP, Aleshin VV, Petrova LA. Self-propagating synthesis of chromium acetylacetonate. Russ Chem Bull. 1995;44(6):1111–3.Google Scholar
  250. 250.
    Borisov AP, Petrova LA, Karpova IP, Makhaev VD. The solid-phase synthesis of chromium β-diketonates upon mechanical activation. Russ J Inorg Chem. 1996;41(3):394–9.Google Scholar
  251. 251.
    Petrova LA, Makhaev VD. Mechanically activated solid-phase synthesis of copper(II), zinc(II), and cadmium(II) diethyldithiocarbamates. Russ J Inorg Chem. 2007;52(6):865–70.Google Scholar
  252. 252.
    Meyer HJ. Solid state metathesis reactions as a conceptual tool in the synthesis of new materials. J Chem Soc Dalton Trans. 2010;38(26):5973–82.Google Scholar
  253. 253.
    Koch EC. Acid-base interactions in energetic materials: I. The hard and soft acids and bases (HSAB) principle––insight to reactivity and sensitivity of energetic materials. Propellants Explos Pyrotech. 2005;30(1):5–16.Google Scholar
  254. 254.
    Bradley JES, translator. Semenov NN. Some problems of chemical kinetics and reactivity. London: Pergamon Press; 1958–1959 (in two volumes).Google Scholar
  255. 255.
    Komorek M, Duit R, Schnegelberger M, editors. Fractals in teaching: on the didactic meaning of fractal concepts. Kiel: Leibniz-Institute for Science Education (IPN); 1998 (in German). Google Scholar
  256. 256.
    Izotov AD , Mavrikidi FI. Fractals: the divisibility of substance as a degree of freedom in materials science. Samara: Samara State Aerospace University (SGAU); 2011 (in Russian). Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.Institute of Problems of Chemical Physics, RASChernogolovkaRussia

Personalised recommendations