Journal of Thermal Analysis and Calorimetry

, Volume 119, Issue 3, pp 1535–1545 | Cite as

An exploratory study on sodium sulphate-activated slag blended with Portland cement under the effect of thermal loads

  • Alaa M. RashadEmail author


In this work, the effect of Portland cement (PC) on 1 % Na2O equivalent of sodium sulphate-activated ground granulated blast-furnace slag (hereafter referred as slag) in terms of compressive strength and pH value before and after exposure to different elevated temperatures has been investigated. Slag was partially replaced with PC at levels of 0, 5, 10 and 15 %, by mass. The specimens were exposed to different elevated temperatures ranging from 200 to 800 °C with an interval of 200 °C. The various phases formed due to elevated temperature decomposition were identified using X-ray diffraction, thermogravimetric analysis and scanning electron microscopy. The results indicated that the inclusion of 10 and 15 % PC enhanced the compressive strength and raised the pH value. On the other hand, the neat activated slag showed the highest fire resistance. The pH value decreased with increasing elevated temperatures.


Sodium sulphate Activated slag Portland cement Elevated temperature Residual strength pH value 



The author was sponsored by Egyptian government for his academic visit to Queen’s University Belfast (QUB), UK. The slag used in this research was supplied by Hanson Cement. Prof. P. A. M. Basheer, Dr. Yun Bai and the facilities provided by the School of Planning, Architecture and Civil Engineering at Queen’s University Belfast are also gratefully acknowledged.


  1. 1.
    Fernández-Jiménez A, Palomo JG, Puertas F. Alkali-activated slag mortars: mechanical strength behavior. Cem Concr Res. 1999;29:1313–21.CrossRefGoogle Scholar
  2. 2.
    Rashad AM, Bai Y, Basheer PAM, Milestone NB, Collier NC. Hydration and properties of sodium sulfate activated slag. Cem Concr Compos. 2013;37:20–9.CrossRefGoogle Scholar
  3. 3.
    Wu X, Jiang W, Roy DM. Early activation and properties of slag cement. Cem Concr Res. 1990;20:961–74.CrossRefGoogle Scholar
  4. 4.
    Rashad AM, Bai Y, Basheer PAM, Collier NC, Milestone NB. Chemical mechanical stability of sodium sulfate activated slag after exposure to elevated temperature. Cem Concr Res. 2012;42:333–43.CrossRefGoogle Scholar
  5. 5.
    Wang S-D, Scrivener KL, Pratt PL. Factors affecting the strength of alkali-activated slag. Cem Concr Res. 1994;24(6):1033–43.CrossRefGoogle Scholar
  6. 6.
    Puertas F. Alkali-activated slag cements: present and future. Mater Constr. 1995;45(239):53–64.CrossRefGoogle Scholar
  7. 7.
    Pu XC, Gan CC, Wang SD, Yang CH. Research reports of an alkali-activated slag cement and concrete, vol. 6. Chongqing: Chongqing Institute of Architecture and Engineering; 1988 (in Chinese).Google Scholar
  8. 8.
    Rashad AM, Khalil MH. A preliminary study of alkali-activated slag blended with silica fume under the effect of thermal loads and thermal shock cycles. Constr Build Mater. 2013;40:522–32.CrossRefGoogle Scholar
  9. 9.
    Rovnaník P, Bayer P, Rovnaníková P. Characterization of alkali activated slag paste after exposure to high temperatures. Constr Build Mater. 2013;47:1479–87.CrossRefGoogle Scholar
  10. 10.
    Karahan O, Yakupoğlu A. Resistance of alkali-activated slag mortar to abrasion and fire. Adv Cem Res. 2011;23(6):289–97.CrossRefGoogle Scholar
  11. 11.
    Guerrieri M, Sanjayan J, Collins F. Residual strength properties of sodium silicate alkali activated slag paste exposed to elevated temperatures. Mater Struct. 2010;43:765–73.CrossRefGoogle Scholar
  12. 12.
    Guerrieri M, Sanjayan JG. Behavior of combined fly ash/slag-based geopolymers when exposed to high temperatures. Fire Mater. 2009;. doi: 10.1002/fam.1014.Google Scholar
  13. 13.
    Bernal SA, Rodrίguez ED, de Gutiérrez RM, Gordillo M, Provis JL. Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends. J Mater Sci. 2011;. doi: 10.1007/s10853-011-5490-z.Google Scholar
  14. 14.
    Morsy MS, Rashad AM, El-Nouhy HA. Effect of elevated temperature on physic-mechanical properties of metakaolin blended cement mortar. Struct Eng Mech. 2009;31(1):1–10.CrossRefGoogle Scholar
  15. 15.
    Seleem HEl_D, Rashad AM, Elsokary T. Effect of elevated temperature on physic-mechanical properties of blended cement concrete. Constr Build Mater. 2011;25:1009–17.CrossRefGoogle Scholar
  16. 16.
    Rashad AM, Zeedan SR. The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load. Constr Build Mater. 2011;25:3098–107.CrossRefGoogle Scholar
  17. 17.
    Phan LT. Fire performance of high strength concrete: a report of the state-of-the-art. Gaithersburg: Building and Fire Research Laboratory, National Institute of Standards and Technology; 1996.Google Scholar
  18. 18.
    Rashad AM. An exploratory study on sodium sulfate activated slag modified with Portland cement. Mater Struct. 2014;. doi: 10.1617/s11527-014-0468-3.Google Scholar
  19. 19.
    Zuda L, Pavlík Z, Rovnaníková P, Bayer P, Černý R. Properties of alkali activated aluminosilicate material after thermal load. Int J Thermophys. 2006;27(4):1250–63.CrossRefGoogle Scholar
  20. 20.
    Zuda L, Rovnaník P, Bayer P, Černý R. Effect of high temperatures on the properties of alkali activated aluminosilicate with electrical porcelain. Int J Thermophys. 2008;29:693–705.CrossRefGoogle Scholar
  21. 21.
    Zuda L, Bayer P, Rovnaník P, Černý R. Mechanical and hydric properties of alkali-activated aluminosilicate composite with electrical porcelain aggregates. Cem Concr Compos. 2008;30:266–73.CrossRefGoogle Scholar
  22. 22.
    Zuda L, Drchalová J, Rovnaník P, Bayer P, Keršner Z, Černý R. Alkali-activated aluminosilicate composite with heat-resistant lightweight aggregates exposed to high temperatures: mechanical and water transport properties. Cem Concr Compos. 2010;32:157–63.CrossRefGoogle Scholar
  23. 23.
    Guerrieri M, Sanjayan J, Collins F. Residual compressive behavior of alkali-activated concrete exposed to elevated temperatures. Fire Mater. 2008;. doi: 10.1002/fam.983.Google Scholar
  24. 24.
    Yongde L, Yao S. Preliminary study on combined-alkali–slag paste materials. Cem Concr Res. 2000;30:963–6.CrossRefGoogle Scholar
  25. 25.
    Bonk F, Schneider J, Cincotto MA, Panepucci H. Characterization by multinuclear high-resolution NMR of hydration products in activated blast-furnace slag pastes. J Am Ceram Soc. 2003;86(10):1712–9.CrossRefGoogle Scholar
  26. 26.
    Atiş CD, Bilim C, Çelik Ö, Karahan O. Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Constr Build Mater. 2009;23:548–55.CrossRefGoogle Scholar
  27. 27.
    Haha MB, Saout GL, Winnefeld F, Lothenbach B. Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cem Concr Res. 2011;41:301–10.CrossRefGoogle Scholar
  28. 28.
    Shi C, Krivenko PV, Roy D. Alkali-activated cements concretes. 1st ed. Boca Raton: Taylor and Francis; 2006.CrossRefGoogle Scholar
  29. 29.
    Fernández-Jiménez A, Puertas F. Structure of calcium silicate hydrates formed in alkaline-activated slag: influence of type of alkaline activator. J Am Ceram Soc. 2003;86(8):1389–94.CrossRefGoogle Scholar
  30. 30.
    Cheng TW, Chiu JP. Fire-resistant geopolymer produced by granulated blast furnace slag. Miner Eng. 2003;16:205–10.CrossRefGoogle Scholar
  31. 31.
    Aydin S, Baradan B. High temperature resistance of alkali-activated slag- and Portland cement-based reactive powder concrete. ACI Mater J. 2012;109-M44:463–70.Google Scholar
  32. 32.
    Chi M. Effects of dosage of alkali-activated solution and curing conditions on the properties and durability of alkali-activated slag concrete. Constr Build Mater. 2012;35:240–5.CrossRefGoogle Scholar
  33. 33.
    Zuda L, Rovnamík P, Bayer P, Černý R. Thermal properties of alkali-activated aluminosilicate composite with lightweight aggregates at elevated temperatures. Fire Mater. 2011;35:231–44.CrossRefGoogle Scholar
  34. 34.
    Collepardi M. The new concrete. 1st ed. Castrette di Villorba TV: Grafiche Tinoretto; 2006.Google Scholar
  35. 35.
    Bazant ZP, Kaplan MF. Concrete at high temperatures—materials properties and mathematical models. Harlow: Longman Group Limited; 1996. 412 pp.Google Scholar
  36. 36.
    Villain G, Thiery M, Platret G. Measurement methods of carbonation profile in concrete: thermogravimetry, chemical analysis and gammadensimetry. Cem Concr Res. 2007;37:1182–92.CrossRefGoogle Scholar
  37. 37.
    Reis PNB, Ferreira JAM, Antunes FV, Costa JDM. Flexural behavior of hybrid laminated composites with natural fibers: coupling agent effect. J Degrad Stab. 2008;93:1170–5.CrossRefGoogle Scholar
  38. 38.
    Taylor HFW. Cement chemistry. London: Thomas Telford; 1997.CrossRefGoogle Scholar
  39. 39.
    Greene KT. Early hydrations of Portland cement. In: Proceedings of the fourth international symposium on the chemistry of cements, Washington, DC, 1960 p. 359–58.Google Scholar
  40. 40.
    Song S, Sohn D, Jennings HM, Mason TO. Hydration of alkali-activated ground granulated blast furnace slag. J Mater Sci. 2000;35:249–57.CrossRefGoogle Scholar
  41. 41.
    Gebhart RF. Survey of North American Portland cement. Cem Aggreg. 1995;17:175–89.Google Scholar
  42. 42.
    Song S, Jennings HM. Pore solution chemistry of alkali-activated ground granulated blast-furnace slag. Cem Concr Res. 1999;29:159–70.CrossRefGoogle Scholar
  43. 43.
    Fernández-Jimènez A, Puertas F. Effect of activator mix on the hydration and strength behavior of alkali-activated slag cement. Adv Cem Res. 2003;15(3):129–36.CrossRefGoogle Scholar
  44. 44.
    Böhni H. Corrosion in reinforced concrete structures. Boca Raton: CRC Press; 2005.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  1. 1.Building Materials Research and Quality Control InstituteHousing & Building National Research Center (HBRC)CairoEgypt

Personalised recommendations