Journal of Thermal Analysis and Calorimetry

, Volume 119, Issue 3, pp 1693–1702 | Cite as

Effect of modified silica on the crystallization and degradation of poly(3-hydroxybutyrate)

Article

Abstract

The crystallization and thermal degradation behaviors of poly(3-hydroxybutyrate) (PHB) filled with surface-modified silicas were analyzed by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and dynamic thermogravimetric analysis (TG). The results of FTIR and TG confirmed that the substantial amounts of methyl methacrylate (MMA) and amidoamine (AMDA) were successfully grafted onto the hydrophilic silica surfaces. From DSC and TG analyses, it was indicated that the crystallization rate, crystallinity, melting temperature (T m), content of the high T m crystals, and thermal stability of PHB were affected by the type and amount of the silicas used and changed with the grafted chemicals. The hydrophobic silica has a better effect on enhancing crystallization rate and thermal stability of PHB than the hydrophilic silica due to the better compatibility with PHB. However, the MMA and AMDA grafted onto the hydrophilic silica surfaces effectively improved the crystallization and degradation effects of the hydrophilic silica. The addition of two parts AMDA-modified silica in a hundred parts PHB has the best improvement in terms of of the crystallization, melting characteristics, and thermal stability of PHB.

Keywords

Polyhydroxybutyrate Silica Degradation Crystallization Methyl methacrylate Amidoamine 

References

  1. 1.
    Mas-Castella J, Urmeneta J, Lafuente R, Navarrete A, Guerrero R. Biodegradation of Poly-β-hydroxyalkanoates in anaerobic sediments. Int Biodeterior Biodegradation. 1995;35:155–74.CrossRefGoogle Scholar
  2. 2.
    Doi Y, Kasuya K, Abe H, Koyama N, Ishiwatari S, Takagi K, Yoshida Y. Evaluation of biodegradabilities of biosynthetic and chemosynthetic polyesters in river water. Polym Degrad Stab. 1996;51:281–6.CrossRefGoogle Scholar
  3. 3.
    Iwata T, Shiromo M, Doi Y. Surface structures of poly[(R)-3-hydroxybutyrate] and its copolymer single crystals before and after enzymatic degradation with an extracellular PHB depolymerase. Macro Chem Phys. 2002;203:1309–16.CrossRefGoogle Scholar
  4. 4.
    Doi Y, Mukai K, Kasuya K, Yamada K. Biodegradation of biosynthetic and chemosynthetic polyhydroxyalkanoates. In: Doi Y, Fukuda K, editors. Biodegradable plastics and polymers. Amsterdam: Elsevier; 1994. p. 39–51.CrossRefGoogle Scholar
  5. 5.
    Kumagai Y, Kanesawa Y, Doi Y. Enzymatic degradation of microbial poly(3-hydroxybutyrate) films. Makromol. Chem. 1992;193:53–7.CrossRefGoogle Scholar
  6. 6.
    Zhao K, Deng Y, Chen GQ. Effects of surface morphology on the biocompatibility of polyhydroxyalkanoates. Biochem Eng J. 2003;16:115–23.CrossRefGoogle Scholar
  7. 7.
    Zheng Z, Bei FF, Tian HL, Chen GQ. Effects of crystallization of polyhydroxyalkanoate blend on surface physicochemical properties and interactions with rabbit articular cartilage chondrocytes. Biomaterials. 2005;26:3537–48.CrossRefGoogle Scholar
  8. 8.
    Chen C, Fei B, Peng S, Zhuang Y, Dong L, Feng Z. Nonisothermal crystallization and melting behavior of poly(3-hydroxybutyrate) and maleated poly(3-hydroxbutyrate). Eur Polym J. 2002;38:1663–70.CrossRefGoogle Scholar
  9. 9.
    Wang L, Zhu W, Wang X, Chen X, Chen GQ, Xu K. Processability modifications of poly(3-hydroxybutyrate) by plasticizing, blending, and stabilizing. J Appl Polym Sci. 2008;107:166–73.CrossRefGoogle Scholar
  10. 10.
    Zhao Q, Cheng G, Song C, Zeng Y, Tao J, Zhang L. Crystallization behavior and biodegradation of poly(3-hydroxybutyrate) and poly(ethylene glycol) multiblock copolymers. Polym Degrad Stab. 2006;91:1240–6.CrossRefGoogle Scholar
  11. 11.
    Lee HK, Ismail J, Kammer HW, Bakar MA. Melt reaction in blends of poly(3-hydroxybutyrate) (PHB) and epoxidized natural rubber (ENR-50). J Appl Polym Sci. 2005;95:113–29.CrossRefGoogle Scholar
  12. 12.
    Kaito A. Unique orientation textures formed in miscible blends of poly(vinylidene fluoride) and poly[(R)-3-hydroxybutyrate]. Polymer. 2006;47:3548–56.CrossRefGoogle Scholar
  13. 13.
    El-Taweel SH, Stoll B, Hohne GWH, Mansour AA, Seliger H. Stress–strain behavior of blends of bacterial polyhydroxybutyrate. J Appl Polym Sci. 2004;94:2528–37.CrossRefGoogle Scholar
  14. 14.
    Liu WJ, Yang HL, Wang Z, Dong LS, Liu JJ. Effect of nucleating agents on the crystallization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). J Appl Polym Sci. 2002;86:2145–52.CrossRefGoogle Scholar
  15. 15.
    Qian J, Zhu L, Zhang J, Whitehouse RS. Comparison of different nucleating agents on crystallization of poly(3-hydroxybutyrate-co-3-hydroxyvalerates). J Polym Sci, Part B: Polym Phys. 2007;45:1564–77.CrossRefGoogle Scholar
  16. 16.
    Weihua K, He Y, Asakawa N, Inoue Y. Effect of lignin particles as a nucleating agent on crystallization of poly(3-hydroxybutyrate). J Appl Polym Sci. 2004;94:2466–74.CrossRefGoogle Scholar
  17. 17.
    Ikejima T, Yagi K, Inoue Y. Thermal properties and crystallization behavior of poly(3-hydroxybutyric acid) in blends with chitin and chitosan. Macromol Chem Phys. 1999;200:413–21.CrossRefGoogle Scholar
  18. 18.
    Zhang X, Lin G, Abou-Hussein R, Hassan MK, Noda I, Mark JE. Crystalline-structr\ure-dependent enzymatic degradation of polymorphic poly(3-hydroxypropionatr). Eur Polym J. 2007;43:3128–35.CrossRefGoogle Scholar
  19. 19.
    Maiti P, Batt CA, Giannelis EP. New biodegradable polyhydroxybutyrate/layered silicate nanocomposite. Biomacromolecules. 2007;8:3393–400.CrossRefGoogle Scholar
  20. 20.
    Kai W, He Y, Inoue Y. Fast crystallization of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with talc and boron nitride as nucleating agents. Polym. International. 2005;54:780–9.CrossRefGoogle Scholar
  21. 21.
    Alata H, Hexig B, Inoue Y. Effect of poly(vinyl alcohol) fine particles as a novel biodegradable nucleating agent on the crystallization of poly(3-hydroxybutyrate). J Polym Sci B. 2006;44:1813–20.CrossRefGoogle Scholar
  22. 22.
    Hong SG, Gau TK, Huang SC. Enhancement of the crystallization and thermal stability of polyhydroxybutyrate by polymeric additives. J Therm Anal Calorim. 2011;103:967–75.CrossRefGoogle Scholar
  23. 23.
    Malinova L, Brozek J. Mixtures poly((R)-3-hydroxybutyrate) and poly(L-lactic acid) subjected to DSC. J Therm Anal Calorim. 2011;103:653–60.CrossRefGoogle Scholar
  24. 24.
    Wen X, Lu X, Peng Q, Zhu F, Zheng N. Crystallization behaviors and morphology of biodegradable poly(3-hydroxybutyrate-co-4- hydroxybutyrate). J Therm Anal Calorim. 2012;109:959–66.CrossRefGoogle Scholar
  25. 25.
    He Y, Inoue Y. Effect of α-cyclodextrin on the crystallization of poly (3-hydroxybutyrate). J Polym Sci B. 2004;42:3461–9.CrossRefGoogle Scholar
  26. 26.
    Tang CY, Chen DZ, Tsui CP, Uskokovic PS, Yu PHF, Leung MCP. Nonisothermal melt-crystallization kinetics of hydroxyapatite-filled poly (3-hydroxybutyrate) composites. J Appl Polym Sci. 2006;102:5388–95.CrossRefGoogle Scholar
  27. 27.
    Figuly GD, Processing of polyhydroxyalkanoates using a nucleant and a plasticizer, United States Patent 20030181555, 2003.Google Scholar
  28. 28.
    Padwa AR, Nucleating agents, United States Patent 20050209377, 2005.Google Scholar
  29. 29.
    Organ SJ, Barham PJ, Webb A, Hydroxyalkanoate polymer composition, United States Patent 5281649, 1994.Google Scholar
  30. 30.
    Satkowski MM, Knapmeyer JT, Kreuzer DP, Nucleating agents for polyhydroxyalkanoates, United States Patent 20060058498, 2006.Google Scholar
  31. 31.
    Asrar J, Pierre JR, Nucleating agents for polyhydroxyalkanoates and other thermoplastic polyesters and methods for their production and use, United States Patent 5973100, 1999.Google Scholar
  32. 32.
    Figuly GD, Processing of polyhydroxyalkanoates using a nucleant and a plasticizer, United States Patent 6774158, 2004.Google Scholar
  33. 33.
    Satkowski MM, Knapmeyer JT, Kreuzer DP, Nucleating agents for polyhydroxyalkanoates, United States Patent 7301000, 2007.Google Scholar
  34. 34.
    Pacetti SD, Method for forming crystallized therapeutic agents on a medical device, United States Patent 20080268018, 2008.Google Scholar
  35. 35.
    Uradnisheck J, Poly(hydroxyalkanoic acid) and thermoformed articles, United States Patent 20090099313, 2009.Google Scholar
  36. 36.
    Prakalathan K, Mohanty S, Nayak SK. Reinforcing effect and isothermal crystallization kinetics of Poly (3-hydroxybutyrate) nanocomposites blended with organically modified montmorillonite. Polym Compos. 2013;. doi: 10.1002/pc.22746.Google Scholar
  37. 37.
    Miloaga DG, Miloaga HAA, Misra M, Drzal LT. Crystallization of poly (3-hydroxybutyrate) by exfoliated graphite nanoplatelets. J Appl Polym Sci. 2007;106:2548–58.CrossRefGoogle Scholar
  38. 38.
    Zhang R, Zhu C, Shan X, Shan X, Xia J, Zhu Q, Hu Y. Study on the poly(3-hydroxybutyrate-co-4-hydroxybutyrate)-based nanocomposites reinforced by surface modified nanocrystalline cellulose. J Appl Polym Sci. 2013;. doi: 10.1002/APP.39383.Google Scholar
  39. 39.
    Dagnon KL, Robinson C, Chen HH, Garrett DC, Innocentini-Mei LH, D’Souza NA. Layer double hydroxides for enhanced poly(3-hydroxybutyrate-co-3- hydroxyvalerate) crystallization. J Appl Polym Sci. 2013;. doi: 10.1002/APP.37646,3395-3406.Google Scholar
  40. 40.
    Dong T, Mori T, Aoyama T, Inoue Y. Rapid crystallization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer accelerated by cyclodextrin-complex as nucleating agent. Carbohydr Polym. 2010;80:387–93.CrossRefGoogle Scholar
  41. 41.
    Puente JAS, Esposito A, Chivrac F, Dargent E. Effect of boron nitride as a nucleating agent on the crystallization of bacterial poly(3-hydroxybutyrate). J Appl Polym Sci. 2013;. doi: 10.1002/APP.38182.Google Scholar
  42. 42.
    Wang L, Wang X, Zhu W, Chen Z, Pan J, Xu K. Effect of nucleation agents on the crystallization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3/4HB). J Appl Polym Sci. 2010;116:1116–23.CrossRefGoogle Scholar
  43. 43.
    Pan P, Shan G, Bao Y, Weng Z. Crystallization kinetics of bacterial poly(3-hydroxylbutyrate) copolyesters with cyanuric acid as a nucleating agent. J Appl Polym Sci. 2013;. doi: 10.1002/APP.38825.Google Scholar
  44. 44.
    Jacquel N, Tajima K, Nakamura N, Kawachi H, Pan P, Inoue Y. Nucleation Mechanism of polyhydroxybutyrate and poly(hydroxybutyrate-co-hydroxyhexanoate) crystallized by orotic acid as a nucleating agent. J Appl Polym Sci. 2010;115:709–15.CrossRefGoogle Scholar
  45. 45.
    Vassiliou AA, Chrissafis K, Bikiaris DN. In situ prepared PET nanocomposites: effect of organically modified montmorillonite and fumed silica nanoparticles on PET physical properties and thermal degradation kinetics. Thermochim Acta. 2010;500:21–9.CrossRefGoogle Scholar
  46. 46.
    Kim SH, Ahn SH, Hirai T. Crystallization kinetics and nucleation activity of silica nanoparticle-filled poly(ethylene 2,6-naphthalate). Polymer. 2003;44:5625–34.CrossRefGoogle Scholar
  47. 47.
    Yang F, Ou Y, Yu Z. Polyamide 6/silica nanocomposites prepared by in situ polymerization. J Appl Polym Sci. 1998;69:355–61.CrossRefGoogle Scholar
  48. 48.
    Jain S, Goossens H, van Duin M, Lemstra P. Effect pf in situ prepared silica nano-particles on non-isothermal crystallization of polypropylene. Polymer. 2005;46:8805–18.CrossRefGoogle Scholar
  49. 49.
    Ma PM, Wang RY, Wang SF, Zhang Y, Zhang YX, Hristova D. Effects of fumed silica on the crystallization behavior and thermal properties of poly(hydroxybutyrate-co-hydroxyvalerate). J Appl Polym Sci. 2008;108:1770–7.CrossRefGoogle Scholar
  50. 50.
    Han L, Han C, Cao W, Wang X, Bian J, Dong L. Preparation and characterization of biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/silica nanocomposites. Polym Eng Sci. 2012;52:250–8.CrossRefGoogle Scholar
  51. 51.
    Lim JS, Noda I, Im SS. Effect of hydrogen bonding on the crystallization behavior of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/silica hybrid composites. Polymer. 2007;48:2745–54.CrossRefGoogle Scholar
  52. 52.
    Hedayati M, Salehi M, Bagheri R, Panjepour M, Maghzian A. Ball milling preparation and characterization of poly (ether ether ketone)/surface modified silica nanocomposite. Powder Technol. 2011;207:296–303.CrossRefGoogle Scholar
  53. 53.
    Lee WK, Iwata T, Abe H, Doi Y. Studies on the Enzymatic Hydrolysis of Solution-grown Poly[(R)-3-hydroxybutyrate] Crystals. Defects in Crystals, Macromolecules. 2000;33:9535–41.CrossRefGoogle Scholar
  54. 54.
    Gunaratne LWMK, Shanks RA, Amarasinghe G. Thermal history effects on crystallisation and melting of poly(3-hydroxybutyrate). Thermochim Acta. 2004;423:127–35.CrossRefGoogle Scholar
  55. 55.
    Chen C, Fei B, Peng S, Zhuang Y, Dong L, Feng Z. Nonisothermal crystallization and melting behavior of poly (3-hydroxybutyrate) and maleated poly (3-hydroxybutyrate) Eur. Polym J. 2002;38:1663–70.Google Scholar
  56. 56.
    Gunaratne LWMK, Shanks RA. Melting and thermal history of poly(hydroxybutyrate-co-hydroxyvalerate) using step-scan DSC. Thermochim Acta. 2005;430:183–90.CrossRefGoogle Scholar
  57. 57.
    Shanks RA, Gunaratne LMWK. Comparison of reversible melting behaviour of poly(3-hydroxybutyrate) using quasi-isothermal and other modulated temperature differential scanning calorimetry techniques. J Therm Anal Calorim. 2011;104:1117–24.CrossRefGoogle Scholar
  58. 58.
    Liu T, Petermann J. Multiple melting behavior in isothermally cold-crystallized isotactic polystyrene. Polymer. 2001;42:6453–61.CrossRefGoogle Scholar
  59. 59.
    Hong SG, Lin YC. Improvement of thermal stability of polyhydroxybutyrates by grafting maleic anhydride by different methods: differential scanning calorimetry, thermogravimetry analysis, and gel permeation chromatography. J Appl Polym Sci. 2008;110:2718–26.CrossRefGoogle Scholar
  60. 60.
    Hong SG, Lin YC. Crystallization and degradation behaviors of treated polyhydroxybutyrates. React Funct Polym. 2008;68:1516–23.CrossRefGoogle Scholar
  61. 61.
    Gupper A. Chan AKL. Kazarian SG, FT-IR imaging of solvent-induced crystallization in polymers, Macromolecules. 2004;37:6498–503.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Materials ScienceYuan-Ze UniversityChung-LiTaiwan

Personalised recommendations