Journal of Thermal Analysis and Calorimetry

, Volume 119, Issue 3, pp 1619–1632 | Cite as

Synthesis, characterization and thermal degradation studies on some oxovanadium(IV) carbodithioates

  • Shashi B. Kalia
  • Rojila Puri
  • Anil Thakur
  • J. Christopher
Article

Abstract

Some oxovanadium(IV) carbodithioates of general formulae [VO(MorphcdtH)2B]SO4, [VO(4-RPipzcdtH)2B]SO4, [VO(4-EtPipzcdt)2B] (Morphcdt = morpholinecarbodithioate, Pipzcdt = piperazinecarbodithioate, R = M, Et and B = nil or Py) have been prepared and characterized by elemental analysis, TG/DSC, FTIR, electrospray mass spectral, conductance, NMR, solution electronic absorption spectral and variable temperature magnetic susceptibility measurement studies. All the complexes exhibit 1:1 electrolytic nature except [VO(4-EtPipzcdt)2B] which is a non electrolyte. Square pyramidal geometry and presence of superexchange interactions through bridging carbodithioate ligands for antiferromagnetic behaviour of complexes [VO(MorphcdtH)2]SO4, [VO(4-RPipzcdtH)2]SO4 and [VO(4-EtPipzcdt)2] have been proposed. Exchange interaction parameter, 2J = −124 to −83 cm−1 has been evaluated. Octahedral geometry for the pyridine adducts of oxovanadium(IV) carbodithioates has been proposed. Some of the complexes have also been screened for their antimicrobial activities against some pathogenic gram-negative bacteria, Escherichia coli, Enterobacter, Pseudomonas aeruginosa, Salmonella typhi, Shigella flexneri and gram-positive Staphylococcus epidermidis and Salmonella typhimurium using twofold serial dilution method. Minimum inhibitory concentration has been determined to fall in the range 31.25–250 μg mL−1.

Keywords

Oxovanadium Carbodithioate Mass NMR TG/DSC 

References

  1. 1.
    Hogarth G. Transition metal dithiocarbamates. Prog Inorg Chem. 2005;53:71.CrossRefGoogle Scholar
  2. 2.
    Mietlarek-Kropidłowska A, Chojnacki J, Strankowski M, Fahmi A, Gazda M, Becker B. Cadmium complex possessing simultaneously silanethiolato- and dithiocarbamato-ligands. A novel single-source precursor of cadmium sulfide. J Therm Anal Calorim. 2014. doi:  10.1007/s10973-014-3842-z.
  3. 3.
    Taylor EH, Walker EM, Bartelt M, Days S, Pappas A. In vitro antimicrobial activity of diethyldithiocarbamate and dimethyldithiocarbamate against methicillin-resistant Staphylococcus. Ann Clin Lab Sci. 1987;17:171–7.Google Scholar
  4. 4.
    Manoussakis G, Bolos C, Ecateriniadu L, Sarric C. Synthesis, characterization and anti-bacterial studies of mixed-ligand complexes of dithiocarbamato—thiocyanato and iron(III), nickel(II), copper(II) and zinc(II). Eur J Med Chem. 1987;22:421–5.CrossRefGoogle Scholar
  5. 5.
    Nigam HL, Pandeya KB, Singh R. 6A1 g ⇌ 2T2 g spin-crossover in iron(III) dithiocarbamates. J Indian Chem Soc. 2001;78:525.Google Scholar
  6. 6.
    Uivarosi V, Badea M, Aldea V, Chirigiu L, Olar R. Thermal and spectral studies of palladium(II) and platinum(IV) complexes with dithiocarbamate derivatives. J Therm Anal Calorim. 2013;111:1177–82.CrossRefGoogle Scholar
  7. 7.
    Golcu A. Transition metal complexes of propranolol dithiocarbamate: synthesis, characterization, analytical properties and biological activity. Trans Met Chem. 2006;31:405–12.CrossRefGoogle Scholar
  8. 8.
    Gokhale NH, Padhye SB, Billington DC, Rathbone DL, Croft SL, Kendrick H, Anson CE, Powell AK. Synthesis and characterization of copper(II) complexes of pyridine-2-carboxamidrazones as potent antimalarial agents. Inorg Chem Acta. 2003;349:23–9.CrossRefGoogle Scholar
  9. 9.
    Kalia SB, Kaushal G, Lumba K, Priyanka. Thermoanalytical investigations of 4-methylpiperazine-1-carbodithioic acid ligand and its iron(III), cobalt(II), copper(II) and zinc(II) complexes. J Therm Anal Calorim. 2008;91(2):609–13.CrossRefGoogle Scholar
  10. 10.
    Cavalheiro ETG, Lonashiro M, Marino G, Brewiglieri ST, Chierice GO. The effect of the aminic substituent on the thermal decomposition of cyclic dithiocarbamates. J Braz Chem Soc. 1999;10(1):65–75.CrossRefGoogle Scholar
  11. 11.
    Siddiqi KS, Nami SAA, Lutfullah. Synthesis, characterization and thermal studies of bipyridine metal complexes containing different substituted dithiocarbamates. Synth React Inog Met Org Nano-Met Chem. 2005;35:445–51.CrossRefGoogle Scholar
  12. 12.
    Kalia SB, Kaushal G, Rojila, Kumar D. Physico-chemical investigation on mixed-ligand manganese (II) and iron (II) complexes of 4-methylpiperazine-1-carbodithioate ligand and 1,10-phenanthroline or 2,20-bipyridyl. J Therm Anal Calorim. 2012;109:1463–71.CrossRefGoogle Scholar
  13. 13.
    Bonati F, Ugo R. Organotin(IV) N, N-disubstituted dithiocarbamates. J Organomet Chem. 1967;10:257.CrossRefGoogle Scholar
  14. 14.
    El-Gahami MA. Synthesis and reactivity of some first-row transition metal complexes of 2-thenoyltrifluoroacetone towards N,N-dialkyl dithiocarbamate. Synth React Inog Met Org Nano-Met Chem. 2002;32:1143–52.CrossRefGoogle Scholar
  15. 15.
    Sovilj SP, Samardzija KB. Mechanism of mass spectral fragmentation of dinuclear copper(ii) complexes with heterocyclic dithiocarbamates and octaazamacrocyclic ligand. J Appl Spectrosc. 2005;72(7):37–42.CrossRefGoogle Scholar
  16. 16.
    Emara AAA. Structural, spectral and biological studies of binuclear tetradentate metal complexes of N3O Schiff base ligand synthesized from 4,6-diacetylresorcinol and diethylenetriamine. Spectrochim Acta Part A. 2010;77:117–25.CrossRefGoogle Scholar
  17. 17.
    Popov LD, Shcherbakov IN, Levchenkov SI, Tupolova YP, Kogan VA, Lukov VV. Binuclear copper (II) and oxovanadium (IV) complexes with 2, 6-diformyl-4-tert-butylphenol-bis-(1′-phthalazinylhydrazone). Synthesis, properties and quantum chemical study. J Coord Chem. 2008;61(3):392–409.CrossRefGoogle Scholar
  18. 18.
    Johnson BFG, Al-Abaidi KH. Mononitrosylmolybdenum tris-(NN-dialkyldithiocarbamates). Chem Commun (Lond). 1968;15:876.CrossRefGoogle Scholar
  19. 19.
    Rehman ZU, Shahzadi S, Ali V, Jin GX. Preparation, spectroscopy, antimicrobial assay, and X-ray structure of dimethyl bis-(4-methylpiperidine dithiocarbamato-S, Sˈ)-tin (IV). Turk J Chem. 2007;31:435–42.Google Scholar
  20. 20.
    Kaludjerovic GN, Djinovic VM, Trifunovic SR, Hodzic IM, Sabo TJ. Synthesis and characterization of tris[butyl-(1-methyl-3-phenyl-propyl)-dithiocarbamato]-cobalt(III) seskvitoluene. J Serb Chem Soc. 2002;67(2):123–6.CrossRefGoogle Scholar
  21. 21.
    Bleaney B, Bowers KD. Anomalous paramagnetism of copper acetate. Proc R Soc Lond A. 1952;214:451–65.CrossRefGoogle Scholar
  22. 22.
    Singh AK, Puri BK, Rawelly RK. Open shell hexamethylene VO(IV), Cr(III), Mn(II & III), Fe(III), Co(II), and Cu(II)—magnetic, spectral and antimicrobial investigations. Indian J Chem A. 1988;27:430.Google Scholar
  23. 23.
    Pandey JK, Sengupta SK, Pandey OP. Synthesis and spectroscopic studies on oxovanadium (IV) tetrazamacrocyclic complexes derived from substituted β-diketones and 2, 6-diaminopyridine. J Indian Chem Soc. 2006;83:107–9.Google Scholar
  24. 24.
    Mishra AP, Pandey LR. Synthesis, characterization and solid state structural studies of oxovanadium (IV)—O, N donor schiff base chelates. Indian J Chem A. 2005;44:1800.Google Scholar
  25. 25.
    Visalli MA, Jacobs MR, Appelbaum PC. MIC and time-kill study of activities of DU-6859a, ciprofloxacin, levofloxacin, sparfloxacin, cefotaxime, imipenem, and vancomycin against nine penicillin-susceptible and -resistant pneumococci. Antimicrob Agents Chemother. 1996;40(2):362–6.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Shashi B. Kalia
    • 1
  • Rojila Puri
    • 1
  • Anil Thakur
    • 2
  • J. Christopher
    • 3
  1. 1.Department of ChemistryHimachal Pradesh UniversityShimlaIndia
  2. 2.Department of BiotechnologyShoolini UniversitySolanIndia
  3. 3.R&D Indian Oil CorporationFaridabadIndia

Personalised recommendations