Effect of cryoprotectants on the reconstitution of silica nanoparticles produced by sol–gel technology

Abstract

Freeze-drying has widely been applied to improve the stabilization of colloidal drug carriers. In the present study, the effect of cryoprotectants on the physicochemical characteristics of silica nanoparticles (SiNP) during the freeze-drying process has been extensively investigated. SiNP were synthesized by sol–gel technology and freeze-dried in the presence of sorbitol, trehalose, and/or mannitol at different concentrations and ratios. Dynamic light scattering (DLS), atomic force microscopy (AFM), X-ray diffraction analysis (XRD), and differential scanning calorimetry (DSC) have been used for particle characterization after freeze-drying. Based on the obtained results, SiNP in the presence of mannitol showed a more crystalline behavior in comparison to nanoparticles with sorbitol or trehalose (confirmed by DSC and XRD). SiNP in the presence of trehalose showed a more crystalline structure than SiNP in the presence of sorbitol. However, trehalose was more efficient in preserving the particle size of nanoparticles during the freeze-drying process. The optimal concentration of trehalose for preserving silica nanoparticles was 10 % at a ratio of (1:1). During the freeze-drying process, trehalose is able to replace water molecules due to the strong interaction via hydrogen bounds between silanol groups present in SiNP surface and the sugar, forming a stable layer around the particle and thus preserving the particle physical properties.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater. 2012;24(12):1504–34. doi:10.1002/adma.201104763.

    Article  CAS  Google Scholar 

  2. 2.

    Barbe C, Bartlett J, Kong LG, Finnie K, Lin HQ, Larkin M, et al. Silica particles: a novel drug-delivery system. Adv Mater. 2004;16(21):1959–66.

    Article  CAS  Google Scholar 

  3. 3.

    Wang L, Wang K, Santra S, Zhao X, Hilliard LR, Smith JE, et al. Watching silica nanoparticles glow in the biological world. Anal Chem. 2006;78(3):646–54. doi:10.1021/ac0693619.

    Article  Google Scholar 

  4. 4.

    Chang L, Shepherd D, Sun J, Ouellette D, Grant KL, Tang X, et al. Mechanism of protein stabilization by sugars during freeze-drying and storage: native structure preservation, specific interaction, and/or immobilization in a glassy matrix? J Pharm Sci. 2005;94(7):1427–44. doi:10.1002/jps.20364.

    Article  CAS  Google Scholar 

  5. 5.

    Mody KT, Mahony D, Cavallaro AS, Stahr F, Qiao SZ, Mahony TJ, et al. Freeze-drying of ovalbumin loaded mesoporous silica nanoparticle vaccine formulation increases antigen stability under ambient conditions. Int J Pharm. 2014;. doi:10.1016/j.ijpharm.2014.01.037.

    Google Scholar 

  6. 6.

    Holzer M, Vogel V. Mäntele W, Schwartz D, Haase W, Langer K. Physico-chemical characterisation of PLGA nanoparticles after freeze-drying and storage. Eur J Pharm Biopharm. 2009;72(2):428–37. doi:10.1016/j.ejpb.2009.02.002.

    Article  CAS  Google Scholar 

  7. 7.

    Han J, Zhou C, Wu Y, Liu F, Wu Q. Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge. Biomacromolecules. 2013;14(5):1529–40. doi:10.1021/bm4001734.

    Article  CAS  Google Scholar 

  8. 8.

    Varshosaz J, Eskandari S, Tabbakhian M. Freeze-drying of nanostructure lipid carriers by different carbohydrate polymers used as cryoprotectants. Carbohydr Polym. 2012;88(4):1157–63. doi:10.1016/j.carbpol.2012.01.051.

    Article  CAS  Google Scholar 

  9. 9.

    Abdelwahed W, Degobert G, Stainmesse S, Fessi H. Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev. 2006;58(15):1688–713. doi:10.1016/j.addr.2006.09.017.

    Article  CAS  Google Scholar 

  10. 10.

    Beck-Broichsitter M, Kleimann P, Schmehl T, Betz T, Bakowsky U, Kissel T, et al. Impact of lyoprotectants for the stabilization of biodegradable nanoparticles on the performance of air-jet, ultrasonic, and vibrating-mesh nebulizers. Eur J Pharm Biopharm. 2012;82(2):272–80. doi:10.1016/j.ejpb.2012.07.004.

    Article  CAS  Google Scholar 

  11. 11.

    Tang KS, Hashmi SM, Shapiro EM. The effect of cryoprotection on the use of PLGA encapsulated iron oxide nanoparticles for magnetic cell labeling. Nanotechnology. 2013;24(12):125101. doi:10.1088/0957-4484/24/12/125101.

    Article  Google Scholar 

  12. 12.

    Slade L, Levine H. Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety. Crit Rev Food Sci Nutr. 1991;30:115–360.

    Article  CAS  Google Scholar 

  13. 13.

    Crowe JH, Crowe LM, Carpenter JF. Preserving dry biomaterials: the water replacement hypothesis. Part 1. BioPharm. 1993;6:28–9.

    CAS  Google Scholar 

  14. 14.

    Allison SD, Molina MdC, Anchordoquy TJ. Stabilization of lipid/DNA complexes during the freezing step of the lyophilization process: the particle isolation hypothesis. Biochim Biophys Acta (BBA)––Biomembr. 2000;1468(1–2):127–38. doi: 10.1016/S0005-2736(00)00251-0.

  15. 15.

    Mody KT, Mahony D, Cavallaro AS, Stahr F, Qiao SZ, Mahony TJ, et al. Freeze-drying of ovalbumin loaded mesoporous silica nanoparticle vaccine formulation increases antigen stability under ambient conditions. Int J Pharm. 2014;465(1–2):325–32. doi:10.1016/j.ijpharm.2014.01.037.

    Article  CAS  Google Scholar 

  16. 16.

    Sameti M, Bohr G, Ravi Kumar MNV, Kneuer C, Bakowsky U, Nacken M, et al. Stabilisation by freeze-drying of cationically modified silica nanoparticles for gene delivery. Int J Pharm. 2003;266(1–2):51–60. doi:10.1016/S0378-5173(03)00380-6.

    Article  CAS  Google Scholar 

  17. 17.

    Bildstein L, Hillaireau H, Desmaële D, Lepêtre-Mouelhi S, Dubernet C, Couvreur P. Freeze-drying of squalenoylated nucleoside analogue nanoparticles. Int J Pharm. 2009;381(2):140–5. doi:10.1016/j.ijpharm.2009.04.002.

    Article  CAS  Google Scholar 

  18. 18.

    Lee MK, Kim MY, Kim S, Lee J. Cryoprotectants for freeze drying of drug nano-suspensions: effect of freezing rate. J Pharm Sci. 2009;98(12):4808–17. doi:10.1002/jps.21786.

    Article  CAS  Google Scholar 

  19. 19.

    Shi A-M, Wang L-J, Li D, Adhikari B. The effect of annealing and cryoprotectants on the properties of vacuum-freeze dried starch nanoparticles. Carbohydr Polym. 2012;88(4):1334–41. doi:10.1016/j.carbpol.2012.02.013.

    Article  CAS  Google Scholar 

  20. 20.

    Wan Q, Ramsey C, Baran G. Thermal pretreatment of silica composite filler materials. J Therm Anal Calorim. 2010;99(1):237–43. doi:10.1007/s10973-009-0139-8.

    Article  CAS  Google Scholar 

  21. 21.

    Abdelwahed M, Boufi S, Ben S, Naceur B, Gandini A. Interaction of silane coupling agents with cellulose. Langmuir. 2002;18:3203–8.

    Article  Google Scholar 

  22. 22.

    Piedmonte D, Summers C, McAuley A, Karamujic L, Ratnaswamy G. Sorbitol crystallization can lead to protein aggregation in Frozen protein formulations. Pharm Res. 2007;24(1):136–46. doi:10.1007/s11095-006-9131-1.

    Article  CAS  Google Scholar 

  23. 23.

    Georgiopoulos P, Kontou E, Meristoudi A, Pispas S, Chatzinikolaidou M. The effect of silica nanoparticles on the thermomechanical properties and degradation behavior of polylactic acid. J Biomater Appl. 2014;29:662–74. doi:10.1177/0885328214545351.

    Article  CAS  Google Scholar 

  24. 24.

    Anhorn MG, Mahler H-C, Langer K. Freeze drying of human serum albumin (HSA) nanoparticles with different excipients. Int J Pharm. 2008;363(1–2):162–9. doi:10.1016/j.ijpharm.2008.07.004.

    Article  CAS  Google Scholar 

  25. 25.

    De Jaeghere F, Allémann E, Leroux J-C, Stevels W, Feijen J, Doelker E, et al. Formulation and lyoprotection of poly(lactic acid-co-ethylene oxide) nanoparticles: influence on physical stability and in vitro cell uptake. Pharm Res. 1999;16(6):859–66. doi:10.1023/a:1018826103261.

    Article  Google Scholar 

  26. 26.

    Imamura K, Iwai M, Ogawa T, Sakiyama T, Nakanishi K. Evaluation of hydration states of protein in freeze-dried amorphous sugar matrix. J Pharm Sci. 2001;90(12):1955–63. doi:10.1002/jps.1146.

    Article  CAS  Google Scholar 

  27. 27.

    Sun WQ, Leopold AC, Crowe LM, Crowe JH. Stability of dry liposomes in sugar glasses. Biophys J. 1996;70(4):1769–76. doi:10.1016/S0006-3495(96)79740-0.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was partially supported by Fundação para a Ciência e Tecnologia (FCT, Portugal), namely the PhD scholarships SFRH/BD/60640/2009 for T. Andreani, SFRH/BD/80335/2011 for J.F. Fangueiro, and SFRH/BD/60552/2009 for S. Doktorovová. FCT, and FEDER/COMPETE funds are also acknowledged under the reference PTDC/SAU-FAR/113100/2009 and PEst-C/AGR/UI4033/2011. The authors also acknowledge the support by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and by European Union Funds (FEDER/COMPETE) under the reference FCOMP-01-0124-FEDER-022696.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eliana B. Souto.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Andreani, T., Kiill, C.P., de Souza, A.L.R. et al. Effect of cryoprotectants on the reconstitution of silica nanoparticles produced by sol–gel technology. J Therm Anal Calorim 120, 1001–1007 (2015). https://doi.org/10.1007/s10973-014-4275-4

Download citation

Keywords

  • Silica nanoparticles
  • Sol–gel
  • Freeze-drying
  • Stability
  • Cryoprotectants