Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 119, Issue 2, pp 1429–1438 | Cite as

Applicability of Fraser–Suzuki function in kinetic analysis of DAEM processes and lignocellulosic biomass pyrolysis processes

  • Zhicai Cheng
  • Weixuan Wu
  • Peng Ji
  • Xiaotong Zhou
  • Ronghou Liu
  • Junmeng Cai
Article

Abstract

In this work, a new method for fitting the conversion rate curves of the distributed activation energy model (DAEM) and lignocellulosic biomass pyrolysis process was introduced. The method was based on the curve fitting technique using the Fraser–Suzuki function. Various simulated DAEM processes were analyzed. The results showed that the conversion rate curve of one DAEM process could be described well by a Fraser–Suzuki function. According to the obtained parameters of the fitted Fraser–Suzuki functions, the influences of the DAEM parameters on the conversion rate curves of the corresponding DAEM processes can be quantitatively obtained. The experimental data of the pyrolysis of cotton stalk, oilseed rape straw, and rice straw were fitted by the Fraser–Suzuki mixture model which involves three individual Fraser–Suzuki functions. It has been found that the Fraser–Suzuki mixture model can reproduce accurately the conversion rate curves of the pyrolysis of three lignocellulosic biomass samples. The Fraser–Suzuki mixture model provides an approach to separate lignocellulosic biomass pyrolysis into three parallel reactions which link to the decomposition of hemicellulose, cellulose, and lignin, respectively.

Keywords

Lignocellulosic biomass Pyrolysis Distributed activation energy model Fraser–Suzuki function Kinetics Fitting 

Notes

Acknowledgements

Financial support was obtained from School of Agriculture and Biology, Shanghai Jiao Tong University (Grant No. NRC201101). The authors would like to acknowledge Professor Lius A. Pérez-Maqueda for his help in the parameter estimation of the Fraser–Suzuki function and Miss Lu Wang for providing TG data.

References

  1. 1.
    White JE, Catallo WJ, Legendre BL. Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrolsis. 2011;91(1):1–33.CrossRefGoogle Scholar
  2. 2.
    Van de Velden M, Baeyens J, Brems A, Janssens B, Dewil R. Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renew Energy. 2010;35(1):232–42.CrossRefGoogle Scholar
  3. 3.
    Barbadillo F, Fuentes A, Naya S, Cao R, Mier JL, Artiaga R. Evaluating the logistic mixture model on real and simulated TG curves. J Therm Anal Calorim. 2007;87(1):223–7.CrossRefGoogle Scholar
  4. 4.
    Cao R, Naya S, Artiaga R, García A, Varela A. Logistic approach to polymer degradation in dynamic TGA. Polym Degrad Stab. 2004;85(1):667–74.CrossRefGoogle Scholar
  5. 5.
    Naya S, Cao R, de Ullibarri IL, Artiaga R, Barbadillo F, García A. Logistic mixture model versus Arrhenius for kinetic study of material degradation by dynamic thermogravimetric analysis. J Chemom. 2006;20(3–4):158–63.CrossRefGoogle Scholar
  6. 6.
    Cai J, Alimujiang S. Kinetic analysis of wheat straw oxidative pyrolysis using thermogravimetric analysis: statistical description and isoconversional kinetic analysis. Ind Eng Chem Res. 2009;48(2):619–24.CrossRefGoogle Scholar
  7. 7.
    Cai J, Chen SY, Liu RH. Weibull mixture model for isoconversional kinetic analysis of biomass oxidative pyrolysis. J Energy Inst. 2009;82(4):238–41.CrossRefGoogle Scholar
  8. 8.
    Cai J, Liu R. Weibull mixture model for modeling nonisothermal kinetics of thermally stimulated solid-state reactions: application to simulated and real kinetic conversion data. J Phys Chem B. 2007;111(36):10681–6.CrossRefGoogle Scholar
  9. 9.
    Cai J, Liu R. Application of Weibull 2-mixture model to describe biomass pyrolysis kinetics. Energy Fuels. 2008;22(1):675–8.CrossRefGoogle Scholar
  10. 10.
    Kuo-Chao L, Keng-Tung W, Chien-Song C, Wei-The T. A new study on combustion behavior of pine sawdust characterized by the Weibull distribution. Chin J Chem Eng. 2009;17(5):860–8.CrossRefGoogle Scholar
  11. 11.
    Yoshikawa M, Yamada S, Koga N. Phenomenological interpretation of the multistep thermal decomposition of silver carbonate to form silver metal. J Phys Chem C. 2014;118(15):8059–70.CrossRefGoogle Scholar
  12. 12.
    Perejón A, Sánchez-Jiménez PE, Criado JM, Pérez-Maqueda LA. Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J Phys Chem B. 2011;115(8):1780–91.CrossRefGoogle Scholar
  13. 13.
    Findoráková L, Svoboda R. Kinetic analysis of the thermal decomposition of Zn (II) 2-chlorobenzoate complex with caffeine. Thermochim Acta. 2012;543:113–7.CrossRefGoogle Scholar
  14. 14.
    Svoboda R, Málek J. Applicability of Fraser-Suzuki function in kinetic analysis of complex crystallization processes. J Therm Anal Calorim. 2013;111(2):1045–56.CrossRefGoogle Scholar
  15. 15.
    Koga N, Goshi Y, Yamada S, Pérez-Maqueda L. Kinetic approach to partially overlapped thermal decomposition processes. J Therm Anal Calorim. 2013;111(2):1463–74.CrossRefGoogle Scholar
  16. 16.
    Koga N, Goshi Y, Yamada S, Pérez-Maqueda LA. Kinetic approach to partially overlapped thermal decomposition processes. J Therm Anal Calorim. 2013;111(2):1463–74.CrossRefGoogle Scholar
  17. 17.
    Wu W, Cai J, Liu R. Isoconversional kinetic analysis of distributed activation energy model processes for pyrolysis of solid fuels. Ind Eng Chem Res. 2013;52(40):14376–83.CrossRefGoogle Scholar
  18. 18.
    Gb Várhegyi, Bz Bobály. Jakab E, Chen H. Thermogravimetric study of biomass pyrolysis kinetics. A distributed activation energy model with prediction tests. Energy Fuels. 2010;25(1):24–32.Google Scholar
  19. 19.
    Sonobe T, Worasuwannarak N. Kinetic analyses of biomass pyrolysis using the distributed activation energy model. Fuel. 2008;87(3):414–21.CrossRefGoogle Scholar
  20. 20.
    NREL. Determination of structural carbohydrates and lignin in biomass. Colorado, USA: National Renewable Energy Laboratory; 2011.Google Scholar
  21. 21.
    ASTM. Standard practice for preparation of biomass for compositional analysis. Pennsylvania, USA: ASTM International; 2007.Google Scholar
  22. 22.
    Fraser R, Suzuki E. Resolution of overlapping absorption bands by least squares procedures. Anal Chem. 1966;38(12):1770–3.CrossRefGoogle Scholar
  23. 23.
    Fraser RD, Suzuki E. Resolution of overlapping bands. Functions for simulating band shapes. Anal Chem. 1969;41(1):37–9.CrossRefGoogle Scholar
  24. 24.
    Felinger A. Data analysis and signal processing in chromatography. Amsterdam: Elsevier Science; 1998.Google Scholar
  25. 25.
    Scheeren P, Barna P, Smit H. A software package for the evaluation of peak parameters in an analytical signal based on a non-linear regression method. Anal Chim Acta. 1985;167:65–80.CrossRefGoogle Scholar
  26. 26.
    Brenner JR. Data analysis made easy with datafit. Chem Eng Educ. 2006;40(1):60–5.Google Scholar
  27. 27.
    Cai J, Liu R. New distributed activation energy model: numerical solution and application to pyrolysis kinetics of some types of biomass. Bioresour Technol. 2008;99(8):2795–9.CrossRefGoogle Scholar
  28. 28.
    Burnham AK, Braun RL. Global kinetic analysis of complex materials. Energy Fuels. 1999;13(1):1–22.CrossRefGoogle Scholar
  29. 29.
    Cai J, Wu W, Liu R. An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass. Renew Sustain Energy Rev. 2014;36:236–46.CrossRefGoogle Scholar
  30. 30.
    Glynn J, Gray TW. The Beginner’s Guide to Mathematica, Version 4. Cambridge: Cambridge University Press; 2000.Google Scholar
  31. 31.
    Güneş M, Güneş S. The influences of various parameters on the numerical solution of nonisothermal DAEM equation. Thermochim Acta. 1999;336(1–2):93–6.Google Scholar
  32. 32.
    Cai J, He F, Yao F. Nonisothermal nth-order DAEM equation and its parametric study—use in the kinetic analysis of biomass pyrolysis. J Math Chem. 2007;42(4):949–56.CrossRefGoogle Scholar
  33. 33.
    Wu W, Mei Y, Zhang L, Liu R, Cai J. Effective activation energies of lignocellulosic biomass pyrolysis. Energy Fuels. 2014;28(6):3916–23.CrossRefGoogle Scholar
  34. 34.
    Orfao JJM, Antunes FJA, Figueiredo JL. Pyrolysis kinetics of lignocellulosic materials—three independent reactions model. Fuel. 1999;78(3):349–58.CrossRefGoogle Scholar
  35. 35.
    Manyà JJ, Velo E, Puigjaner L. Kinetics of biomass pyrolysis: a reformulated three-parallel-reactions model. Ind Eng Chem Res. 2003;42(3):434–41.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Zhicai Cheng
    • 1
  • Weixuan Wu
    • 1
  • Peng Ji
    • 1
  • Xiaotong Zhou
    • 1
  • Ronghou Liu
    • 1
  • Junmeng Cai
    • 1
  1. 1.Biomass Energy Engineering Research Center, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China

Personalised recommendations