Skip to main content
Log in

Polypyridinic ligand coordination to Zn2+ and Hg2+ metal ions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermodynamic parameters for the complexation reaction between Zn2+ and Hg2+ ions with the mixed amino-polypyridinic ligands tris[(2-pyridyl)methyl]amine (TPA) and 6,6-bis–bis (pyridylmethyl)aminomethyl]-2,2-bipyridine (BTPA) have been obtained in anhydrous dimethylsulfoxyde (DMSO) by using spectrophotometry, polarography, potentiometry and titration calorimetry. Complexes with stoichiometry 1:1 have been observed in all cases but Hg-TPA system, for which 1:2 complex is also formed. As found in water, both \(\Updelta G_{\rm{j}}^{\circ}\) and \(\Updelta H_{\rm{j}}^{\circ}\) become more favorable when going down along the group. From a comparison of data with those reported for other metal ions in DMSO (Co2+, Ag+, Cd2+) and in water as solvent, it is shown that TPA is more selective towards Hg2+ in water than in DMSO and that the selectivity of BTPA in DMSO is much higher towards Cd2+ and Hg2+ ions with respect to Zn2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Comuzzi C, Melchior A, Polese P, Portanova R, Tolazzi M. Oxygenation reaction of Co(trien)2+ complex in dimethylsulfoxide and the aerobic oxidation of 2,6-di-tert-butylphenol catalyzed by Co(II)-amine complexes. Inorg Chim Acta. 2003;355:57–63.

    Article  CAS  Google Scholar 

  2. Melchior A, Tolazzi M. Co(II) complexes with tripodal N-donor ligands. Thermodynamics of formation in anaerobic conditions and oxygen binding. Inorg Chim Acta. 2011;367:120–6.

    Article  CAS  Google Scholar 

  3. Melchior A, Peressini S, Portanova R, Sangregorio C, Tavagnacco C, Tolazzi M. Cobalt(II) and cadmium(II) chelates with nitrogen donors and O-2 bonding to Co(II) derivatives. Inorg Chim Acta. 2004;357:3473–82.

    Article  CAS  Google Scholar 

  4. Gawryszewska P, Sokolnicki J, Døssing A, Riehl JP, Muller G, Legendziewicz J. Characterization of the electronic excited-state energetics and solution structure of Lanthanide(III) complexes with the polypyridine ligand 6,6′-bis[bis(2-pyridylmethyl)aminomethyl]-2,2′-bipyridine. J Phys Chem A. 2005;109:3858–63.

    Article  CAS  Google Scholar 

  5. Wolf MMN, Gross R, Schumann C, Wolny JA, Schunemann V, Døssing A, Paulsen H, McGarvey JJ, Diller R. Sub-picosecond time resolved infrared spectroscopy of high-spin state formation in Fe(II) spin crossover complexesw. Phys Chem Chem Phys. 2008;10:4264–73.

    Article  CAS  Google Scholar 

  6. Karlin KD, Nanthakumar A, Fox S, Murthy NN, Ravi N, Huynh BH, Orosz RD, Day EP. X-Ray structure and physical-properties of the Oxo-bridged complex [(F-8-Tpp)Fe-O-Cu(Tmpa)](+), F-8-Tpp Equals Tetrakis(2,6-Difluorophenyl)Porphyrinate(2-), Tmpa Equals Tris(2-Pyridylmethyl)Amine–Modeling the Cytochrome-C-Oxidase Fe-Cu heterodinuclear active-site. J Am Chem Soc. 1994;116:4753–63.

    Article  CAS  Google Scholar 

  7. Piccinelli F, Melchior A, Speghini A, Monari M, Tolazzi M, Bettinelli M. Europium (III) complexes with new N-donor ligand: A comparative study in solid state and solution. Polyhedron 2013;57:30–38.

  8. Williams NJ, Gan W, Reibenspies JH, Hancock RD. Possible steric control of the relative strength of chelation enhanced fluorescence for Zinc(II) compared to Cadmium(II): metal ion complexing properties of Tris(2-quinolylmethyl)amine, a crystallographic, UV-Visible, and fluorometric study. Inorg Chem. 2009;48:1407–15.

    Article  CAS  Google Scholar 

  9. Vonkeman G H, Thornton I, Makuch Z. Mercury–Cadmium–Lead handbook for sustainable heavy metals police and regulation. 2001.

  10. Døssing A, Toftlund H, Hazell A, Bourassa J, Ford PC. Crystal structure, luminescence and other properties of some lanthanide complexes of the polypyridine ligand 6,6′-bis[bis(2-pyridylmethyl) aminomethyl]-2,2′-bipyridine. J Chem Soc Dalton. 1997;3:335–9.

    Article  Google Scholar 

  11. Bravard F, Rosset C, Delangle P. Cationic lanthanide complexes of neutral tripodal N, O ligands: enthalpy versus entropy-driven podate formation in water. Dalton Trans. 2004;13:2012–8.

    Article  Google Scholar 

  12. Kim H K, Brown R J C. Mercury: sources, applications and health impacts. 2012.

  13. Holmes P, James KAF, Levy LS. Is low-level environmental mercury exposure of concern to human health? Sci Total Environ. 2009;408:171–82.

    Article  CAS  Google Scholar 

  14. Nordberg G, Handbook on the toxicology of metals. Academic Press. 2007.

  15. Jha IN, Iyengar L, Rao AVSP. Removal of Cadmium Using chitosan. J Environ Eng-Asce. 1988;114:962–74.

    Article  CAS  Google Scholar 

  16. Becker NSC, Eldridge RJ. Selective recovery of Mercury(II) from industrial wastewaters. 1. Use of a chelating ion-exchanger regenerated with brine. React Polym. 1993;21:5–14.

    Article  CAS  Google Scholar 

  17. Barron-Zambrano J, Laborie S, Viers P, Rakib M, Durand G. Mercury removal and recovery from aqueous solutions by coupled complexation-ultrafiltration and electrolysis. J Membr Sci. 2004;229:179–86.

    Article  CAS  Google Scholar 

  18. Del Piero S, Fedele R, Melchior A, Portanova R, Tolazzi M, Zangrando E. Solvation effects on the stability of silver(I) complexes with pyridine-containing ligands studied by thermodynamic and DFT methods. Inorg Chem. 2007;46:4683–91.

    Article  Google Scholar 

  19. Comuzzi C, Grespan M, Melchior A, Portanova R, Tolazzi M. Thermodynamics of complexation of cadmium(II) by open-chain N-donor ligands in dimethyl sulfoxide solution. Eur J: Inorg Chem.; 2001. p. 3087–94.

    Google Scholar 

  20. Di Bernardo P, Melchior A, Portanova R, Tolazzi M, Zanonato PL. Complex formation of N-donor ligands with group 11 monovalent ions. Coord Chem Rev. 2008;252:1270–85.

    Article  Google Scholar 

  21. Del Piero S, Melchior A, Menotti D, Tolazzi M, Døssing A. Solvent effect on the thermodynamics of Ag(I) coordination to tripodal polypyridine ligands. J Therm Anal Calorim. 2009;97:845–51.

    Article  Google Scholar 

  22. Melchior A, Tolazzi M, Del Piero S. Thermodynamic study of Cd(II) complex formation with tripodal N-donor ligands in DMSO. J Therm Anal Calorim. 2011;103:35–40.

    Article  CAS  Google Scholar 

  23. Melchior A, Peralta E, Valiente M, Tavagnacco C, Endrizzi F, Tolazzi M. Interaction of d(10) metal ions with thioether ligands: a thermodynamic and theoretical study. Dalton Trans. 2013;42:6074–82.

    Article  CAS  Google Scholar 

  24. Schatz M, Becker M, Thaler F, Hampel F, Schindler S, Jacobson RR, Tyeklar Z, Murthy NN, Ghosh P, Chen Q, Zubieta J, Karlin KD. Copper(I) complexes, copper(I)/O2 reactivity, and copper(II) complex adducts, with a series of tetradentate tripyridylalkylamine tripodal ligands. Inorg Chem. 2001;40:2312–22.

    Article  CAS  Google Scholar 

  25. Dietrich J, Heinemann FW, Schrodt A, Schindler S. A new carbonate bridged dinuclear zinc complex with tripodal amine ligands. Inorg Chim Acta. 1999;288:206–9.

    Article  CAS  Google Scholar 

  26. Døssing A, Hazell A, Toftlund H. Crystal structures of dinuclear copper(II) and oxovanadium(IV) complexes of N, N, N, N-tetrakis(2-pyridylmethyl)-6,6′-bis(aminomethyl)-2,2′-bipyridine. Acta Chem Scand. 1996;50:95–101.

    Article  Google Scholar 

  27. Cassol A, Di Bernardo P, Zanonato PL, Portanova R, Tolazzi M. Thermodynamics of complex-formation of silver with amines in dimethylsulfoxide. J Chem Soc Dalton. 1987;3:657–59.

  28. Gans P, Sabatini A, Vacca A. Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta. 1996;43:1739–53.

    Article  CAS  Google Scholar 

  29. Del Piero S, Melchior A, Polese P, Portanova R, Tolazzi M. A novel multipurpose excel tool for equilibrium speciation based on Newton-Raphson method and on a hybrid genetic algorithm. Ann Chim-Rome. 2006;96:29–49.

    Article  Google Scholar 

  30. Comuzzi C, Polese P, Melchior A, Portanova R, Tolazzi M. SOLVERSTAT: a new utility for multipurpose analysis. An application to the investigation of dioxygenated Co(II) complex formation in dimethylsulfoxide solution. Talanta. 2002;59:67–80.

    Article  Google Scholar 

  31. Bard AJ, Faulkner RL. Electrochemical methods: fundamentals and applications. 2nd ed. New York: Wiley; 2012.

    Google Scholar 

  32. IUPAC stability constants database, Version 6. UK: Academic Software. 2012.

  33. Gans P, Sabatini A, Vacca A. Simultaneous calculation of equilibrium constants and standard formation enthalpies from calorimetric data for systems with multiple equilibria in solution. J Solut Chem. 2008;37:467–76.

    Article  CAS  Google Scholar 

  34. Anderegg G, Hubmann E, Podder NG, Wenk F. Pyridinderivate Als Komplexbildner VIII. Die Herstellung Je Eines Neuen Vier- Und Sechszähnigen Liganden. Helv Chim Acta. 1977;50:2330–2.

    Article  Google Scholar 

  35. Anderegg G, Gramlich V. 1/1 Metal-complexes of Bivalent Cobalt, Nickel, Copper, Zinc, and Cadmium with the Tripodal Ligand Tris[2-(Dimethylamino)Ethyl]Amine––Their stabilities and the X-Ray Crystal-structure of its Copper(II) complex sulfate. Helv Chim Acta. 1994;77:685–90.

    Article  CAS  Google Scholar 

  36. Ahrland S. Complex equilibria, solvation and solubility. Pure Appl Chem. 1990;62:2077–82.

    Article  CAS  Google Scholar 

  37. Bebout DC, Stokes SW, Butcher RJ. Comparison of heteronuclear coupling constants for isostructural nitrogen coordination compounds of Cd-111/113 and Hg-199. Inorg Chem. 1999;38:1126–33.

    Article  CAS  Google Scholar 

  38. Melchior A, Peralta E, Valiente M, Tolazzi M. Solvent effect on heavy metal coordination with thioether ligands: a thermodynamic and theoretical study. Polyhedron. 2014;75:88–94.

    Article  CAS  Google Scholar 

  39. Shannon DR. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976;32:751–67.

    Article  Google Scholar 

  40. Brady C, Callaghan PL, Ciunik Z, Coates CG, Døssing A, Hazell A, McGarvey JJ, Schenker S, Toftlund H, Trautwein AX, Winkler H, Wolny JA. Molecular structure and vibrational spectra of spin-crossover complexes in solution and colloidal media: resonance Raman and time-resolved resonance Raman studies. Inorg Chem. 2004;43:4289–99.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Anders Døssing (Department of Chemistry, University of Copenhagen, Denmark) for providing the BTPA ligand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Melchior.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melchior, A., Grazioli, C., Tavagnacco, C. et al. Polypyridinic ligand coordination to Zn2+ and Hg2+ metal ions. J Therm Anal Calorim 119, 1267–1272 (2015). https://doi.org/10.1007/s10973-014-4214-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4214-4

Keywords

Navigation