Skip to main content
Log in

Thermal performances and fire behaviors of rosin-based rigid polyurethane foam nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Microencapsulated intumescent flame retardants were successfully prepared by in situ polymerization technology and their structures were characterized by FTIR spectra, SEM microphotographs, and TG analyses. Microencapsulated treatments on expandable graphite (EG) and ammonium polyphosphate (APP) increased the expanded volume of EG and improved the water resistance of APP. After incorporation of microencapsulated intumescent flame retardants into RPUF, the prepared rosin-based rigid polyurethane foam possessed more uniform cell structure and higher compressive strength than incorporation of the same amount of intumescent flame retardants. It is attributable to improved interfacial adhesion and stress transfer between microencapsulated intumescent flame retardants and RPUF matrix. Simultaneously, after incorporation of microencapsulated intumescent flame retardants into RPUF, the prepared rosin-based rigid polyurethane foam possessed better flame retardancy and fire behavior than incorporation of the same amount of intumescent flame retardants. It is attributed to better synergistic effect between microencapsulated expandable graphite and ammonium polyphosphate in gas and condensed phases. Furthermore, synergistic flame retardant rosin-based rigid polyurethane foam nanocomposite was successfully fabricated by adjusting the appropriate ratio of microencapsulated intumescent flame retardants and organically modified layered double hydroxide. The LOI value and the specific compressive strength for filled MEG10/MAPP10/OLDH3.0 foam increased about 36.4 and 1.7 % compared with neat RPUF. The cone calorimetry measurement showed that the average heat release rate, total heat release, average smoke production rate, average rate of smoke release, average specific extinction area, total smoke release, and CO/CO2 mass ratio of filled MEG10/MAPP10/OLDH3.0 foam decreased about 23.2, 20.2, 50.0, 48.3, 35.4, 33.0, and 21.3 % compared with neat RPUF, respectively. Therefore, using microencapsulated intumescent flame retardants and organically modified layered double hydroxide are promising strategies for simultaneously improving the flame retardancy, mechanical property, and fire behavior of rigid polyurethane foams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Klempner D, Frisch KC. Handbook of polymeric foams and technology. New York: Hanser Publishers; 1991.

    Google Scholar 

  2. Qiu JF, Zhang MQ, Rong MZ, Wu SP, Karger-Kocsisc J. Rigid bio-foam plastics with intrinsic flame retardancy derived from soybean oil. J Mater Chem A. 2013;1:2533–42.

    Article  CAS  Google Scholar 

  3. Jin JF, Chen YL, Wang DN, Hu CP, Zhu S, Vanoverloop L. Structures and physical properties of rigid polyurethane foam prepared with rosin-based polyol. J Appl Polym Sci. 2002;84:598–604.

    Article  CAS  Google Scholar 

  4. Heinrich H, Stefan P. The importance of intumescent systems for fire protection of plastic materials. Polym Int. 2000;49:1106–14.

    Article  Google Scholar 

  5. Bourbigot S, Le Bras M, Duquesne S, Rochery M. Recent advances for intumescent polymers. Macromol Mater Eng. 2004;289:499–511.

    Article  CAS  Google Scholar 

  6. Hu XM, Wang DM. Enhanced fire behavior of rigid polyurethane foam by intumescent flame retardants. J Appl Polym Sci. 2013;129:238–46.

    Article  CAS  Google Scholar 

  7. Bian XC, Tang JH, Li ZM. Flame retardancy of hollow glass microsphere/rigid polyurethane foams in the presence of expandable graphite. J Appl Polym Sci. 2008;109:1935–43.

    Article  CAS  Google Scholar 

  8. Modesti M, Lorenzetti A, Simioni F, Camino G. Expandable graphite as an intumescent flame retardant in polyisocyanurate-polyurethane foams. Polym Degrad Stab. 2002;77:195–202.

    Article  CAS  Google Scholar 

  9. Le Bras M, Bugajny M, Lefebvre JM, Bourbigot S. Use of polyurethanes as char-forming agents in polypropylene intumescent formulations. Polym Int. 2000;49:1115–24.

    Article  Google Scholar 

  10. Wu K, Hu Y, Song L, Lu HD, Wang ZZ. Flame retardancy and thermal degradation of intumescent flame retardant starch-based biodegradable composites. Ind Eng Chem Res. 2009;48:3150–7.

    Article  CAS  Google Scholar 

  11. Bouanani F, Bendedouch D, Hemery P, Bounaceur B. Encapsulation of montmorillonite in nanoparticles by mini emulsion polymerization. Colloids Surf A. 2008;317:751–5.

    Article  CAS  Google Scholar 

  12. Tiarks F, Landfester K, Antonietti M. Encapsulation of carbon black by mini emulsion polymerization. Macromol Chem Phys. 2001;202:51–60.

    Article  CAS  Google Scholar 

  13. Ye L, Meng XY, Ji X, Li ZM, Tang JH. Synthesis and characterization of expandable graphite–poly(methyl methacrylate) composite particles and their application to flame retardation of rigid polyurethane foams. Polym Degrad Stab. 2009;94:971–9.

    Article  CAS  Google Scholar 

  14. Zheng ZH, Yan JT, Sun HM, Cheng ZQ, Li WJ, Wang HY, Cui XJ. Preparation and characterization of microencapsulated ammonium polyphosphate and its synergistic flame-retarded polyurethane rigid foams with expandable graphite. Polym Int. 2014;63:84–92.

    Article  CAS  Google Scholar 

  15. Gao LP, Zheng GY, Zhou YH, Hu LH, Feng GD, Xie YL. Synergistic effect of expandable graphite, melamine polyphosphate and layered double hydroxide on improving the fire behavior of rosin-based rigid polyurethane foam. Ind Crop Prod. 2013;50:638–47.

    Article  CAS  Google Scholar 

  16. Gao LP, Zheng GY, Zhou YH, Hu LH, Feng GD, Zhang M. Synergistic effect of expandable graphite, diethyl ethylphosphonate and organically-modified layered double hydroxide on flame retardancy and fire behavior of polyisocyanurate-polyurethane foam nanocomposite. Polym Degrad Stab. 2014;101:92–101.

    Article  CAS  Google Scholar 

  17. Guo SZ, Zhang C, Peng HD, Wang WZ, Liu TX. Structural characterization, thermal and mechanical properties of polyurethane/CoAl layered double hydroxide nanocomposites prepared via in situ polymerization. Compos Sci Technol. 2011;71:791–6.

    Article  CAS  Google Scholar 

  18. Liu ZP, Ma RZ, Osada M, Iyi N, Ebina Y, Takada K. Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J Am Chem Soc. 2006;128:4872–80.

    Article  CAS  Google Scholar 

  19. Wang BB, Hu S, Zhao KM, Lu HD, Song L, Hu Y. Preparation of polyurethane microencapsulated expandable graphite, and its application in ethylene vinyl acetate copolymer containing silica-gel microencapsulated ammonium polyphosphate. Ind Eng Chem Res. 2011;50:11476–84.

    Article  CAS  Google Scholar 

  20. Lee LJ, Zeng C, Cao X, Han X, Shen J, Xu G. Polymer nanocomposite foams. Compos Sci Technol. 2005;65:2344–63.

    Article  CAS  Google Scholar 

  21. Thirumal M, Khastgir D, Singha NK, Manjunath BS, Naik YP. Mechanical, morphological and thermal properties of rigid polyurethane foam: effect of the fillers. Cell Polym. 2007;26:245–59.

    CAS  Google Scholar 

  22. Thirumal M, Dipak Khastgir, Nando GB, Naik YP, Singh Nikhil K. Halogen-free flame retardant PUF: effect of melamine compounds on mechanical, thermal and flame retardant properties. Polym Degrad Stab. 2010;95:1138–45.

    Article  CAS  Google Scholar 

  23. Xu Q, Jin C, Griffin G, Jiang Y. Fire safety evaluation of expanded polystyrene foam by multi-scale methods. J Therm Anal Calorim. 2014;115:1651–60.

    Article  CAS  Google Scholar 

  24. Hatakeyama H, Hirogaki A, Matsumura H, Hatakeyam T. Glass transition temperature of polyurethane foams derived from lignin by controlled reaction rate. J Therm Anal Calorim. 2013;114:1075–82.

    Article  CAS  Google Scholar 

  25. Modesti M, Lorenzetti A, Besco S, Hrelja D, Semenzato S, Bertani R, Michelin RA. Synergism between flame retardant and modified layered silicate on thermal stability and fire behaviour of polyurethane nanocomposite foams. Polym Degrad Stab. 2008;93:2166–71.

    Article  CAS  Google Scholar 

  26. Lu SY, Hamerton I. Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci. 2002;27:1661–712.

    Article  CAS  Google Scholar 

  27. Matusinovic Z, Wilkie CA. Fire retardancy and morphology of layered double hydroxide nanocomposites: a review. J Mater Chem. 2012;22:18701–4.

    Article  CAS  Google Scholar 

  28. Lefebvre J, Bastin B, Le Bras M, Duquesne S, Palejia R, Delobel R. Thermal stability and fire properties of conventional flexible polyurethane foam formulation. Polym Degrad Stab. 2005;88:28–34.

    Article  CAS  Google Scholar 

  29. Modestia M, Lorenzettia A, Simionia F, Checchinb M. Influence of different flame retardants on fire behavior of modified PIR/PUR polymers. Polym Degrad Stab. 2001;74:475–9.

    Article  Google Scholar 

  30. Kotal M, Srivastava SK. Synergistic effect of organo modification and isocyanate grafting of layered double hydroxide in reinforcing properties of polyurethane nanocomposites. J Mater Chem. 2011;21:18540–51.

    Article  CAS  Google Scholar 

  31. Urbanczyk L, Bourbigot S, Calberg C, Detrembleur C, Jérôme C, Boschinid F, Alexandrea M. Preparation of fire-resistant poly(styrene-co-acrylonitrile) foams using supercritical CO2 technology. J Mater Chem. 2010;20:1567–76.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Jiangsu Province Natural Science Foundation of China (Grant No. BK20130071) and the National 12th Five-year Science and Technology Support Plan (Grant No. 2012BAD32B05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyao Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Zheng, G., Zhou, Y. et al. Thermal performances and fire behaviors of rosin-based rigid polyurethane foam nanocomposites. J Therm Anal Calorim 119, 411–424 (2015). https://doi.org/10.1007/s10973-014-4192-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4192-6

Keywords

Navigation