Skip to main content
Log in

Kinetics of pyrolysis of ramie fabric wastes from thermogravimetric data

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The reutilization of the ramie-based textile waste or scraps from textile production through pyrolysis is a promising route for producing bio-fuels. In this work, the thermal behaviors and pyrolysis kinetic of used ramie fabric were investigated using thermogravimetric analysis at different heating rates of 5, 10, 20, and 40 °C min−1 under nitrogen conditions. Three model-free methods, the isoconversional Kissinger, Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO) models and Coats–Redfern model-fitting method were employed to identify the kinetic triple including activation energy, pre-exponential factor, and reaction model. It was established that the Coats–Redfern model-fitting method was suspectable for determining the kinetic reaction mechanism but the most probable reaction R (R2 or R3) function can be evaluated on the basis of the activation energy value which is nearest to the value of E a obtained by the FWO and KAS methods. A kinetic compensation effect, represented by the equation lgA = −1.3515 + 0.0808E a can be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Poskrobko S, Biofuels Krol D, Part II. Thermogravimetric research of dry decompostion. J Therm Anal Calorim. 2012;109:629–38.

    Article  CAS  Google Scholar 

  2. Liu ZT, et al. A green route to prepare cellulose acetate particle from ramie fiber. React Funct Polym. 2007;67:104–12.

    Article  CAS  Google Scholar 

  3. Goyal HB, Seal D, Saxena RC. Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sustain Energy Rev. 2008;12:504–17.

    Article  CAS  Google Scholar 

  4. Bridgawater AV. Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J. 2003;91:87–102.

    Article  Google Scholar 

  5. Bridgwater AV. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy. 2012;38:68–94.

    Article  CAS  Google Scholar 

  6. Buryan P, Staff M. Pyrolysis of the waste biomass. J Therm Anal Calorim. 2008;93:637–40.

    Article  CAS  Google Scholar 

  7. Rapagna S, et al. Continuous fast pyrolysis of biomass at high tempertaure in a fluidized bed reactor. J Therm Anal Calorim. 1992;38:2621–9.

    Article  CAS  Google Scholar 

  8. Rath J, Staudinger G. Cracking reactions of tar from pyrolysis of spruce wood. Fuel. 2001;80(10):1379–89.

    Article  CAS  Google Scholar 

  9. Slopiecka K, Bartocci P, Fantozzi F. Thermogravimetric analysis and kinetic study of polar wood pyrolysis. Appl Energy. 2012;97:491–7.

    Article  CAS  Google Scholar 

  10. Acikalm K. Thermogravimetric analysis of walnut shell as pyrolysis feedstock. J Therm Anal Calorim. 2011;105:145–50.

    Article  Google Scholar 

  11. Chen CX, Ma XQ, Liu K. Thermogravimetric analysis of microalgae combustion under different oxygen supply concentrations. Appl Energy. 2011;88:3189–96.

    Article  CAS  Google Scholar 

  12. Zhao H, et al. Thermogravimetry study of the pyrolytic characteristics and kinetics of maro-algae macrocystis pyrifera residue. J Therm Anal Calorim. 2013;111:1685–90.

    Article  CAS  Google Scholar 

  13. Mothe CG, Miranda IC. Study of kinetic parameters of thermal decompostion of bagasse and sugarcane straw using Friedman and Ozawa–Flynn–Wall isoconversional methods. J Therm Anal Calorim. 2013;113:497–505.

    Article  CAS  Google Scholar 

  14. Molto J, et al. Thermogravimetric analysis during the decomposition of cotton fabrics in an inert and air environment. J Anal Appl Pyrol. 2006;76:124–31.

    Article  CAS  Google Scholar 

  15. Miranda R, Sosa_Blanco C, Martinez D, Vasile C. Pyrolysis of textile wastes I. Kinetics and yields. J Anal Appl Pyrol. 2007;80:489–95.

    Article  CAS  Google Scholar 

  16. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stan. 1956;57:2712.

    Article  Google Scholar 

  17. Akahira T, Sunose T. Joint convection of four electrical institutes. Sci Technol. 1971;16:22–31.

    Google Scholar 

  18. Flynn J, Wall L. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Pol Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  19. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  20. Doyle CD. Series approximations to the equations of thermogravimetric data. Nature. 1965;207:290–1.

    Article  CAS  Google Scholar 

  21. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  22. Vyazovkin S, Wight CA. Kinetics in solids. Annu Rev Phys Chem. 1997;48:125–49.

    Article  CAS  Google Scholar 

  23. Conesa JA, Caballero JA, et al. Analysis of different kinetic models in the dynamic pyrolysis of cellulose. Thermochim Acta. 1995;254:175–92.

    Article  CAS  Google Scholar 

  24. Liu QF, et al. Study on the pyrolysis of wood-derived rayon fiber by thermogravimetry-mass spectrometry. J Mol Struct. 2005;733:193–202.

    Article  CAS  Google Scholar 

  25. Jaber JO, Probert SD. Pyrolysis and gasification kinetics of Jordanian oil-shales. Appl Energy. 1999;63:269–86.

    Article  CAS  Google Scholar 

  26. Wongsiriamnuay T, Tippayawong N. Non-isothermal pyrolysis characteristics of giant sensitive plants using thermogravimetric analysis. Bioresour Technol. 2010;101:5638–44.

    Article  CAS  Google Scholar 

  27. Braga RM, Melo DMA, Aquino FM. Characterization and comparative study of pyrolysis kinetics of the rice husk and the elephant grass. J Therm Anal Calorim. 2014;115:1915–20.

    Article  CAS  Google Scholar 

  28. Yao F, et al. Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab. 2008;93:90–8.

    Article  CAS  Google Scholar 

  29. Xu GY, et al. Kinetic study on thermal decomposition of flax fibers with model-free and coats-redfern model fitting kinetic approaches. CIESC J. 2010;61:2480–7.

    CAS  Google Scholar 

  30. Hamid R, Mostafa R, Faezeh M. The non-isothermal degradation kinetics of St-MMA copolymers. Polym Degrad Stab. 2014;99:240–8.

    Article  Google Scholar 

  31. Budrugeac P, Homentcovschi D, Segal E. Critical considerations on the isoconversional methods III. On the evaluation of the activation energy from non-isothermal data. J Therm Anal Calorim. 2001;66:557–65.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the joint project from the Henan-Provincial and the China-National Natural Science Foundation (Project No. U1304513) and the Key Laboratory of Fire Fighting and Rescuing Technology Foundation of the Ministry of Public Security of China under Grant No. KF201301.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanglong Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, F., Feng, Q., Xu, Y. et al. Kinetics of pyrolysis of ramie fabric wastes from thermogravimetric data. J Therm Anal Calorim 119, 651–657 (2015). https://doi.org/10.1007/s10973-014-4179-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4179-3

Keywords

Navigation