Skip to main content
Log in

Spectroscopic and thermographic study of Ni–Zn ferrites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present work, the spinel ferrites system NixZn1–xFe2O4 (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) is synthesized by using auto-combustion method to throw light on the influence of particle size on structural, elastic, and thermal properties of ferrites. The auto-combustion method with some modification is exploited for synthesis of the materials. The X-ray diffractometry was employed to confirm the single phase spinel structure formation and to determine the cell-edge parameters. The elastic properties are studied by using Fourier transform infrared transmission spectroscopy (FTIR) at 27 °C. The force constants for tetrahedral (A) and octahedral (B) sites of the spinel lattice are determined through infrared spectral analysis. The elastic constants like Bulk modulus, Rigidity modulus, Young’s modulus, and Poisson’s ratio are determined. Thermography is used to study thermal process of the combustion reaction, and thermal study is used to determine thermal parameters. Main idea is to minimize the synthesis cost of the ferrite materials used together with tailoring the structural, elastic, and thermal properties of the ferrites required for the desired applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Henglein A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev. 1989;89:1861–73.

    Article  CAS  Google Scholar 

  2. Aldea A, Bârsan V. Trends in nanophysics. Berlin Heidelberg: Springer; 2010.

    Google Scholar 

  3. Hwang DW, Ko HY, Lee JH, Kang H, Ryu H, Song JC, Lee DS, Kim S. A nucleolin-targeted multimodal nanoparticle imaging probe for tracking cancer cells using an aptamer. J Nucl Med. 2010;51:98–105.

    Article  CAS  Google Scholar 

  4. Satyanarayan L, Reddy KM, Mahorama SV. Nanosized spinel NiFe2O4: a novel material for the detection of liquefied petroleum gas in air. Mater Chem Phys. 2003;82:21–6.

    Article  Google Scholar 

  5. Panicker GJ and Tyagi VM. RF scale model range. Proc INCEMIC. 2003; 353–358.

  6. Goldman A. Modern ferrite technology. 2nd ed. New York: Springer; 2006.

    Google Scholar 

  7. Kavas H, Baykal A, Toprak MS, Köseoğlu Y, Sertkol M, Aktaş B. Cation distribution and magnetic properties of Zn doped NiFe2O4 nanoparticles synthesized by PEG-assisted hydrothermal route. Alloy Compd. 2009;479:49–55.

    Article  CAS  Google Scholar 

  8. Neel L. Preuves experimentales du ferrimagnetisme et de L’antiferromagnetisme. Ann l’Inst Fourier. 1950;1:163.

    Article  Google Scholar 

  9. Baldev R, Rajendran V, Palanichamy P. Science and technology of ultrasonics. New Delhi: Narosa Publishing House; 2004.

    Google Scholar 

  10. Szczygieł I, Winiarska K. Synthesis and characterization of manganese–zinc ferrite obtained by thermal decomposition from organic precursors. J Therm Anal Calorim. 2014;115:471–7.

    Article  Google Scholar 

  11. Durrani SK, Naz S, Hayat K. Thermal analysis and phase evolution of nanocrystalline perovskite oxide materials synthesized via hydrothermal and self-combustion methods. J Therm Anal Calorim. 2014;115:1371–80.

    Article  CAS  Google Scholar 

  12. Baraliya JD, Joshi HH. Spectroscopy investigation of nanometric cobalt ferrite synthesized by different techniques. Vib Spectrosc. 2014;74:75–80.

    Article  CAS  Google Scholar 

  13. Dong C. PowderX: Windows-95-based program for powder X-ray diffraction data processing. J Appl Cryst. 1999;32:838.

    Article  CAS  Google Scholar 

  14. Culity BD. Element of X-ray diffraction. Riverside: Ed Adison Wesley; 1978.

    Google Scholar 

  15. Ahmed MA, Okasha N, El-Dek SI. Preparation and characterization of nanometric Mn ferrite via different methods. Nanotechnology. 2008;19:065603–8.

    Article  CAS  Google Scholar 

  16. Buerger MJ. Crystal structure analysis. New York: Wiley; 1960. p. 198–200.

    Google Scholar 

  17. Wooster WA. Physical properties and atomic arrangements in crystals. Rep Prog Phys. 1953;16:62.

    Article  Google Scholar 

  18. Waldron RD. Infrared spectra of ferrites. Phys Rev B. 1955;99:1727.

    Article  CAS  Google Scholar 

  19. Modi KB, Chantbar MC, Joshi HH. Study of elastic behaviour of magnesium ferri aluminates. Ceram Int. 2006;32:111–4.

    Article  CAS  Google Scholar 

  20. Gouveia DS, Rosenhaim R, Maurera MA, Lima SJG, Paskocimas CA, Longo E, Souza AG, Santos IMG. Thermal study of CoxZn7-xSb2O12 spinel obtained by pechini method using different alcohols. J Therm Anal Cal. 2004;75:453–60.

    Article  CAS  Google Scholar 

  21. Samui P, Gupta NK, Dash S, Dahale ND, Naik Y. Thermoluminescence and linear thermal expansion of MgAl2O4. J Therm Anal Calorim. 2014;115:1289–94.

    Article  CAS  Google Scholar 

  22. Qu H, Liu C, Wu W, Chen L, Xu J. Using cone calorimeter to study thermal degradation of flexible PVC filled with zinc ferrite and Mg(OH)2. J Therm Anal Calorim. 2014;115:1081–7.

    Article  CAS  Google Scholar 

  23. Surzhikov AP, Frangulyan TS, Ghyngazov SA. A thermoanalysis of phase transformations and linear shrinkage kinetics of ceramics made from ultrafine plasmochemical ZrO2(Y)–Al2O3 powders. J Therm Anal Calorim. 2014;115:1439–45.

    Article  CAS  Google Scholar 

  24. Habibi MH, Fakhri F. Sol–gel combustion synthesis and characterization of nanostructure copper chromite spinel. J Therm Anal Calorim. 2014;115:1329–33.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Baraliya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baraliya, J.D., Joshi, H.H. Spectroscopic and thermographic study of Ni–Zn ferrites. J Therm Anal Calorim 119, 85–90 (2015). https://doi.org/10.1007/s10973-014-4177-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4177-5

Keywords

Navigation