Skip to main content
Log in

Non-conventional hexagonal structure for boric acid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

When a special preparation procedure has been applied, the crystallization system of boric acid has been changed from triclinic to hexagonal: at temperatures between 60 and 70 °C, under controlled pH conditions, the boric acid belonging to triclinic system was mixed with d-glucose, calcium carbonate, and calcium hydroxide. Thermal analysis evidenced a final compound with quite similar thermal behavior as that of initial triclinic boric acid but having some differences in decomposition kinetics. X-ray diffraction analysis showed a new compound, named HBA, belonging to the hexagonal crystallization system with the following lattice parameters: a = b = 20.4869 Å and c = 12.1506 Å. This strong anisotropic structure was also confirmed by the hexagonal form of the crystallites, grown from HBA and water solutions, which have been observed with a light polarized optical microscope. Exotic polycrystalline conglomerates grown from water solution of HBA have nice colours that are changing when they are set different angles between polarizer and analyser. FTIR measurements revealed the IR absorbance bands belonging to O–H, O–B, and H–O–B bonds of the trigonal planar boric acid, for both crystallographic systems, but some small differences between wave-numbers and peak intensities were encountered. Finally, the dielectric properties of the water solutions of HBA are analyzed by performing electric susceptibility measurements at different temperatures, from 25 to 50 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Jolly WL. Modern inorganic chemistry. 2nd ed. New York: McGraw-Hill; 1991.

    Google Scholar 

  2. Iavazzo C, Gkegkes ID, Zarkada IM, Falagas ME. Boric acid for recurrent vulvovaginal candidiasis: the clinical evidence. J Womens Health. 2011;20:1245–55.

  3. Housecroft CE, Sharpe AG. Inorganic chemistry. 2nd ed. München: Pearson Prentice-Hall; 2005.

    Google Scholar 

  4. Perelygin YuP, Chistyakov DYu. Boric acid. Russ J Appl Chem. 2006;79:2041–2.

    Article  CAS  Google Scholar 

  5. Rotaru P, Scorei R, Hărăbor A, Dumitru MD. Thermal analysis of a calcium fructoborate sample. Thermochim Acta. 2010;506:8–13.

    Article  CAS  Google Scholar 

  6. Scorei RI, Rotaru P. Calcium fructoborate—Potential anti-inflammatory agent. Biol Trace Elem Res. 2011;143:1223–38.

    Article  CAS  Google Scholar 

  7. Zachariasen WH. The precise structure of orthoboric acid. Acta Cryst. 1954;7:305–10.

    Article  CAS  Google Scholar 

  8. Zapol P, Curtiss L, Erdemir A. Periodic ab initio calculations of orthoboric acid. J Chem Phys. 2000;113:3338–43.

    Article  CAS  Google Scholar 

  9. Cullity B. Elements of X-ray diffraction. Reading: Addison-Wesley; 1978.

    Google Scholar 

  10. Pop V, Chicinas I, Jumate N. Material physics. Experimental methods. Cluj-Napoca: Presa Universitara Clujeana House; 2001.

    Google Scholar 

  11. Patterson AI. The Scherrer formula for X-ray particle size determination. Phys Rev. 1939;56:978–82.

    Article  CAS  Google Scholar 

  12. Moanţă A, Ionescu C, Rotaru P, Socaciu M, Harabor A. Structural characterization, thermal investigation, and liquid crystalline behavior of 4-[(4-chlorobenzyl)oxy]-3,4′-dichloroazobenzene. J Therm Anal Calorim. 2010;102:1079–86.

    Article  Google Scholar 

  13. Harabor A, Rotaru P, Harabor NA. Thermal and spectral behavior of (Y, Eu)VO4 powder. J Therm Anal Calorim. 2013;111:1211–9.

    Article  CAS  Google Scholar 

  14. Pascu CI, Gingu O, Rotaru P, Vida-Simiti I, Harabor A, Lupu N. Bulk titanium for structural and biomedical applications obtaining by spark plasma sintering (SPS) from titanium hydride powder. J Therm Anal Calorim. 2013;113:849–57.

    Article  CAS  Google Scholar 

  15. Rotaru A. Thermal analysis and kinetic study of Petrosani bituminous coal from Romania in comparison with a sample of Ural bituminous coal. J Therm Anal Calorim. 2012;110:1283–91.

    Article  CAS  Google Scholar 

  16. Samide A, Tutunaru B, Negrilă C, Dobriţescu A. Study of the corrosion products formed on carbon steel surface in hydrochloric acid solution. J Therm Anal Calorim. 2012;110:145–52.

    Article  CAS  Google Scholar 

  17. Rotaru A, Moanta A, Sălăgeanu I, Budrugeac P, Segal E. Thermal decomposition kinetics of some aromatic azomonoethers. Part I. Decomposition of 4-[(4-chlorobenzyl)oxy]-4′-nitro-azobenzene. J Therm Anal Calorim. 2007;87:395–400.

    Article  CAS  Google Scholar 

  18. Donato DI, Lazzara G, Milioto S. Thermogravimetric analysis. A tool to evaluate the ability of mixtures in consolidating waterlogged archaeological woods. J Therm Anal Calorim. 2010;101:1085–91.

    Article  CAS  Google Scholar 

  19. Rotaru A, Goşa M, Rotaru P. Computational thermal and kinetic analysis. Software for non-isothermal kinetics by standard procedure. J Therm Anal Calorim. 2008;94:367–71.

    Article  CAS  Google Scholar 

  20. Rotaru A, Goşa M. Computational thermal and kinetic analysis. Complete standard procedure to evaluate the kinetic triplet form non-isothermal data. J Therm Anal Calorim. 2009;97:421–6.

    Article  CAS  Google Scholar 

  21. Badea M, Olar R, Marinescu D, Segal E, Rotaru A. Thermal stability of some new complexes bearing ligands with polymerizable groups. J Therm Anal Calorim. 2007;88:317–21.

    Article  CAS  Google Scholar 

  22. Rotaru A, Bratulescu G, Rotaru P. Thermal analysis of azoic dyes: part I. Non-isothermal decomposition kinetics of [4-(4-chlorobenzyloxy)-3-methylphenyl](p-tolyl)diazene in dynamic air atmosphere. Thermochim Acta. 2009;489:63–9.

    Article  CAS  Google Scholar 

  23. Degeratu S, Rotaru P, Manolea Gh, Manolea HO, Rotaru A. Thermal characteristics of Ni–Ti SMA (shape memory alloy) actuators. J Therm Anal Calorim. 2009;97:695–700.

    Article  CAS  Google Scholar 

  24. Peak D, Luther GW III, Sparks DL. ATR-FTIR spectroscopic studies of boric acid adsorption on hydrous ferric oxide. Geochim Cosmochim Acta. 2003;67:2551–60.

    Article  CAS  Google Scholar 

  25. Feynman RP, Leighton RB, Sands M. The Feynman lectures on physics, vol. 2. Massachusetts: Addison-Wesley Reading; 1964.

    Google Scholar 

  26. Jackson JD. Classical Electrodynamics. New York-London-Sydney-Toronto: Wiley; 1975.

    Google Scholar 

  27. Kasap S. Dielectric materials: static relative permittivity. Saskatchewan: Mcgraw–Hill; 2006.

    Google Scholar 

  28. Spanulescu I. Electricity and magnetism. Bucharest: Victor Publisher; 2001.

    Google Scholar 

  29. Tanaka M, Sato M. Microwave heating of water, ice and saline solution: molecular dynamics study. J Chem Phys. 2007;126:034509.

    Article  Google Scholar 

  30. Harabor A. Temperature effects on the electric susceptibility for a solution made from 10 mg of NaCl and 1 ml of H2O. Phys AUC. 2006;16:68–73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rotaru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harabor, A., Rotaru, P., Scorei, R.I. et al. Non-conventional hexagonal structure for boric acid. J Therm Anal Calorim 118, 1375–1384 (2014). https://doi.org/10.1007/s10973-014-4169-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4169-5

Keywords

Navigation