Skip to main content
Log in

Thermal characterization of II–VI binary crystals by photopyroelectric calorimetry and infrared lock-in thermography

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

An Erratum to this article was published on 06 December 2014

Abstract

In this paper, a complete thermal characterization (measurement of all static and dynamic thermal parameters) of some selected II–VI binary crystals was carried out. The semiconductors under investigation were grown from the melt by high-pressure/high-temperature-modified Bridgman method. The contact photopyroelectric (PPE) method in back configuration and non-contact infrared lock-in thermography technique were used in order to get the thermal diffusivity of the investigated crystals. The thermal effusivity of the samples was obtained using the PPE technique in the front configuration, together with the thermal wave resonator cavity method. Knowing the values of the thermal effusivity and thermal diffusivity, the remaining two thermal parameters, i.e., thermal conductivity and specific heat were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Niiyama Y, Watanabe M. BeMgZnSe-based ultraviolet lasers. Semiconduct Sci Technol. 2005;20:1187–97.

    Article  CAS  Google Scholar 

  2. Rozpłoch F, Patyk J, Firszt F, Łęgowski S, Męczynska H, Zakrzewski J, Marasek A. Raman, photoluminescence and photoacoustic investigations of Zn1 − x − yBexMnySe mixed crystals. Phys Stat Sol B. 2002;229:707–9.

    Article  Google Scholar 

  3. Coufal H, Mandelis A. Pyroelectric sensors for the photothermal analysis of condensed phases. Ferroelectrics. 1991;118:379–409.

    Article  CAS  Google Scholar 

  4. Dadarlat D, Chirtoc M, Candea R, Bratu I. Direct pyroelectric detection of optical absorption in non-transparent materials. Infrared Phys. 1984;24:469–71.

    Article  Google Scholar 

  5. Dadarlat D. Contact and non-contact photothermal calorimetry for investigation of condensed matter. J Therm Anal Calorim. 2012;110:27–35.

    Article  CAS  Google Scholar 

  6. Dadarlat D, Pop MN, Onija O, Streza M, Pop MM, Longuemart S, Depriester M, Sahraoui AH, Simon V. Photopyroelectric (PPE) calorimetry of composite materials. J Therm Anal Calorim. 2013;111:1129–32.

    Article  CAS  Google Scholar 

  7. Salazar A. On the influence of the coupling fluid in photopyroelectric measurements. Rev Sci Instrum. 2003;74:825–7.

    Article  CAS  Google Scholar 

  8. Salazar A, Oleaga A. A new method to overcome the underestimation of the thermal diffusivity of solid samples induced by the coupling fluid in photopyroelectric measurements. Int J Thermophys. 2012;33:1901–7.

    Article  CAS  Google Scholar 

  9. Salazar A, Oleaga A. Overcoming the influence of the coupling fluid in photopyroelectric measurements of solid samples. Rev Sci Instrum. 2012;83:014903–7.

    Article  Google Scholar 

  10. Shen J, Mandelis A. Thermal wave resonator cavity. Rev Sci Instrum. 1995;66:4999–5005.

    Article  CAS  Google Scholar 

  11. Pawlak M, Firszt F, Łęgowski S, Męczyńska H, Gibkes J, Pelzl J. Thermal transport properties of Cd1 − xMgxSe mixed crystals measured by means of the photopyroelectric method. Int J Thermophys. 2010;31:187–98.

    Article  CAS  Google Scholar 

  12. Dadarlat D. Photopyroelectric calorimetry of liquids; recent development and applications. Laser Phys. 2009;19:1330–9.

    Article  CAS  Google Scholar 

  13. http://www.htw-gmbh.de/. Accessed 8 Jan 2014.

  14. Chirtoc M, Mihailescu G. Theory of the photopyroelectric method for investigation of optical and thermal materials properties. Phys Rev B. 1989;40:9606–17.

    Article  CAS  Google Scholar 

  15. Mandelis A, Zver MM. Theory of photopyroelectric spectroscopy of solids. J Appl Phys. 1985;57:4421–30.

    Article  CAS  Google Scholar 

  16. Dadarlat D, Streza M, Pop MN, Tosa V, Delenclos S, Longuemart S, Sahraoui AH. Photopyroelectric calorimetry of FPPE–TWRC method. J Therm Anal Calorim. 2010;101:397–402.

    Article  CAS  Google Scholar 

  17. Carslaw HW, Jaeger JC. Conduction of heat in solids. 2nd ed. London, UK: Oxford Univ. Press; 1959.

    Google Scholar 

  18. Chirtoc M, Antoniow J S, Egee M. The effective thermal thickness: a new concept for photothermal investigation of layered systems. AIP Conference Proceedings Rome, Italy. 1998; 463:84–86.

  19. Madelung O. Semiconductors: data handbook. Berlin: Springer-Verlag; 2003.

    Google Scholar 

  20. Strzałkowski K, Zakrzewski J, Maliński M. Determination of the exciton binding energy using photothermal and photoluminescence spectroscopy. Int J Thermophys. 2013;34:691–700.

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by the research fellowship within project “Enhancing Educational Potential of Nicolaus Copernicus University in the Disciplines of Mathematical and Natural Sciences” (project no. POKL.04.01.01-00-081/10.). Two authors (Mihaela Streza and Dorin Dadarlat) acknowledge partial financial support provided by the Ministry of Education Research and Youth of Romania, through the National Research Program PN-II-PT-PCCA-2-11-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Streza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strzałkowski, K., Streza, M., Dadarlat, D. et al. Thermal characterization of II–VI binary crystals by photopyroelectric calorimetry and infrared lock-in thermography. J Therm Anal Calorim 119, 319–327 (2015). https://doi.org/10.1007/s10973-014-4137-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4137-0

Keywords

Navigation