Skip to main content
Log in

Thermal, structural analysis, Mössbauer and impedance study of copper nickel ferrite nanoparticles synthesized via Tween 80-assisted hydrothermal process

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nanocrystalline nickel ferrite and copper nickel ferrite materials were synthesized through surfactant Tween 80-assisted hydrothermal reaction at low temperature using metallic copper, nickel, and iron as raw materials. Thermogravimetric (TG) and differential thermal analysis (DTA) were used to determine the decomposition of the precursors. Phase composition, microstructural characterization, and distribution of cations in tetrahedral and octahedral sites of crystal structure properties of synthesized ferrite materials were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) absorption, and Mössbauer spectroscopy. The impedance spectroscopic studies of copper nickel ferrite sintered ceramics were carried out at room temperature. TG and DTA of precursors revealed that the crystallization temperature for spinel ferrites phases formation was around 650 °C which were being synthesized through Tween 80-assisted hydrothermal process in highly basic reaction at 180–200 °C for 11–13 h in PTFE-lined stainless steel autoclave. XRD analysis and Rietveld refinement study confirm the formation of single-phase cubic spinel nickel ferrite (NiFe2O4) and copper nickel ferrite (Ni0.5Cu0.5Fe2O4) with cell parameters 8.3385, 8.3595 Å and space group Fd3 m, respectively. The synthesized ferrite products showed extensive XRD line broadening, and the average crystallite sizes of NiFe2O4 and Cu0.5Ni0.5Fe2O4 ferrites were in range of 21–29 nm and 18–23 nm, respectively. Mössbauer parameters are characteristic of substituted Cu-Ni-Fe2O4 ferrite material. Isothermal shrinkage characteristic and coefficient of thermal expansion were determined by dilatometry. The ferrite specimens showed excellent densification at 1,050 °C temperature, and uniformly fine grain-sintered ceramics with submicron grain size (10–18 μm) were obtained after sintering at 850 and 1,050 °C. Sintering at 1,050 °C, results in the formation of depletion layer at grain boundaries which act as trapping centers for the carriers and an increase in the impedance values are conferred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Safarik I, Safarikova M. Magnetic nanoparticles and bioscience. In: Rahman Z, Schubert U, editors. Hofmann H. Nanostructured materials: Springer Vienna; 2002. p. 1–23.

    Google Scholar 

  2. Xu Q, Wei Y, Liu Y, Ji X, Yang I, Gu M. Preparation of Mg/Fe spinel ferrite nanoparticles from Mg/Fe-LDH microcrystallites under mild conditions. Solid State Sci. 2009;11:472–8.

    Article  CAS  Google Scholar 

  3. Candeiaa RA, Bernardib MIB, Longoc E, Santosa IMG, Souza AG. Synthesis and characterization of spinel pigment CaFe2O4 obtained by the polymeric precursor method. Mater Lett. 2001;58:569–72.

    Article  Google Scholar 

  4. Rosi NL, Mirkin CA. Nanostructures in biodiagnostics. Chem Rev. 2005;105:1547–62.

    Article  CAS  Google Scholar 

  5. Lee AH, Huh YM, Jun YW, Seo JW, Jang JT, Song HT, Kim S, Cho EJ, Yoon HG, Suh JS, Cheon J. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med. 2007;13:95–9.

    Article  CAS  Google Scholar 

  6. Prasad NK, Rathinasamy K, Panda D, Bahadur D. Mechanism of cell death induced by magnetic hyperthermia with nanoparticles of γ-MnxFe2-xO3 synthesized by a single step process. J Mater Chem. 2007;17:5042–51.

    Article  CAS  Google Scholar 

  7. Kinemuchi Y, Ishizaka K, Suematsu H, Jiang W, Yatsui K. Magnetic properties of nanosize NiFe 2 O 4 particles synthesized by pulsed wire discharge. Thin Solid Films. 2002;407:109–13.

    Article  CAS  Google Scholar 

  8. Alarif A, Deraz NM, Shaban S. Structural, morphological and magnetic properties of NiFe2O4 nanoparticles. J Alloys Compd. 2009;486:501–6.

    Article  Google Scholar 

  9. Sanpo N, Wang J, Berndt CC. Influence of chelating agents on the microstructure and antibacterial property of cobalt ferrite nanopowders. J Austra Ceram Soc. 2013;49:84–91.

    CAS  Google Scholar 

  10. Uitert JV. Nickel copper ferrites for microwave applications. J Appl Phys. 1956;27:723–6.

    Article  Google Scholar 

  11. Luders U, Barthelemy A, Bibes M, Bouzehouane K, Fusil S, Jacquet E, Contour JP, Bobo JF, Fontcuberta J, Fert A. NiFe2O4: a versatile spinel material brings new opportunities for spintronics. Adv Mater. 2006;18:1733–6.

    Article  CAS  Google Scholar 

  12. Lee H, Jung JC, Kim H, Chung YM, Kim TJ, Lee SJ, Oh SH, Kim YS, Song IK. Effect of Divalent Metal Component (MeII) on the Catalytic Performance of MeIIFe2O4 Catalysts in the Oxidative Dehydrogenation of n-Butene to 1,3-Butadiene. Catal Lett. 2008;124:364–8.

    Article  CAS  Google Scholar 

  13. Gedam NN, Kadu AV, Padole PR, Bodade AB, Chaudhari GN. Structural Properties of Nanosized NiFe2O4 for LPG Sensor. Sensors & Transducers J. 2009;110:86–95.

    CAS  Google Scholar 

  14. Patil KC, Hegde MS, Rattan T, Aruna ST. Chemistry of nanocrystalline oxide materials: combustion synthesis, properties and applications. Singapore: World Scientific; 2008.

    Book  Google Scholar 

  15. Stewart SJ, Tueros M, Cernicciaro G, Scorzelli RB. Magnetic size growth in nonocrystalline copper ferrite. Solid State Commun. 2004;129:347–414.

    Article  CAS  Google Scholar 

  16. Lavela P, Tirado JL. CoFe 2 O 4  and NiFe 2 O 4 synthesized by sol–gel procedures for their use as anode materials for Li ion batteries. J Power Sources. 2007;172:379–87.

    Article  CAS  Google Scholar 

  17. Sutka A, Mezinskis G, Strikis G, Siskin A. Gas sensitivity of stoichiometric and excess-iron Ni-Zn ferrite prepared by sol-gel auto combustion. Energetika. 2012;58:166–72.

    Article  CAS  Google Scholar 

  18. Kakade MB, Ramanathan S, Kothyiyal GP. Nano-alumina by gel combustion, its thermal characterization and slurry-based coating on stainless steel surface. J Therm Anal Calorim. 2013;112:133–40.

    Article  CAS  Google Scholar 

  19. Durrani SK, Naz S, Hayat K. Thermal analysis and phase evolution of nonocrystalline perovskite oxide materials synthesized via hydrothermal and self-combustion methods. J Therm Anal Calorim. 2014;115:1371–80.

    Article  CAS  Google Scholar 

  20. Durrani SK, Hussain SZ, Saeed K, Khan Y, Arif M, Ahmed N. Hydrothermal synthesis and characterization of nanosized transition metal chromite spinels. Turk J Chem. 2012;36:111–20.

    CAS  Google Scholar 

  21. Durrani SK, Naz S, Nadeem M, Khan AA. Thermal, structural, and impedance analysis of nanocrystalline magnesium chromite spinel synthesized via hydrothermal process. J Therm Anal Calorim. 2014;116:309–20.

    Article  CAS  Google Scholar 

  22. Brabers VAM. Infrared spectra of cubic and tetragonal manganese ferrites. Phys Status Solidi. 1969;33:563–72.

    Article  CAS  Google Scholar 

  23. Cannas C, Falqui A, Musinu A, Peddis D, Piccaluga G. CoFe2O4 nanocrystalline powders prepared by citrate-gel methods: synthesis, structure and magnetic properties. J Nanopart Research. 2006;8:255–67.

    Article  CAS  Google Scholar 

  24. McClune WF. Powder diffraction file, inorganic phases. Swarthmore: International centre for diffraction; 1989.

    Google Scholar 

  25. Culity BD, Stock SR. Elements of X-Ray Diffraction. 2nd ed. Reading: Addition-Wesley; 1978.

    Google Scholar 

  26. Hoque SM, Choudhury MA, Islam MF. Characterization of Ni-Cu Mixed Spinel Ferrite. J Magn Magn Mater. 2002;251:292–303.

    Article  CAS  Google Scholar 

  27. Gabal MA, Al-Angari YM, Kadi MW. Structural and magnetic properties of nanocrystalline Ni1-xCuxFe2O4 prepared through oxalates precursors. Polyhedron. 2011;30:1185–90.

    Article  CAS  Google Scholar 

  28. Askeland DR. The science and engineering of materials. 2nd ed. NY: Champman & Hall; 1990.

    Google Scholar 

  29. Siddique M, Butt NM, Shafi M, Abbass T, Misbah UI. Cation distribution in Ni-substituted Mn-Ferrite by Mössbour effect technique. J Radioanal Nucl Chem. 2003;258:525–9.

    Article  CAS  Google Scholar 

  30. Siddique M, Khan RTA, Shafi M. Fluctuation in occupancy of Cu2+ ions in Zn- and Cd-substituted Cu-Ferrite. J Radioanal Nucl Chem. 2008;277:531–7.

    Article  CAS  Google Scholar 

  31. Nadeem M, Mushtaq A. Thermal cycling induced reversibility/irreversibility in the ac electrical properties of La0.50Ca0.50MnO3+δ by impedance spectroscopy. J Appl Phys. 2009;106:0737131–6.

    Article  Google Scholar 

  32. Iqbal MJ, Nadeem M, Hassan MM. Low temperature AC electrical study of Pr0.5-xLaxCa0.5MnO3 (x = 0.0–0.4) ceramics by employing impedance spectroscopy. J App Phys. 2013;114:1137081–8.

    Google Scholar 

Download references

Acknowledgements

One of the author (Sumaira Naz) wishes to thank the financial support of the Higher Education Commission (HEC), Pakistan through the (5000) Indigenous PhD scholarship scheme in Science and Technology. Authors also wish to thank to Aurangzeb, M.M.R Baig, M. Shafi, M. Hussain, Z. Ahmed, Shahid Ayub, and Laquit Ali for their technical and lab assistance during XRD, SEM, Mössbauer data collection, and hydrothermal experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Khan Durrani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durrani, S.K., Naz, S., Nadeem, M. et al. Thermal, structural analysis, Mössbauer and impedance study of copper nickel ferrite nanoparticles synthesized via Tween 80-assisted hydrothermal process. J Therm Anal Calorim 119, 253–263 (2015). https://doi.org/10.1007/s10973-014-4090-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4090-y

Keywords

Navigation