Skip to main content
Log in

PTFE–Al2O3 reactive interaction at high heating rates

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Differential scanning calorimetry and a high-speed temperature scanner were used to characterize dynamic features of the reaction between polytetrafluoroethylene (PTFE) and Al2O3 under heating rates ranging between 20 and 780 °C min−1. Exothermic reaction behavior between PTFE and Al2O3 was observed at heating rates of 150 °C min−1 and higher. Thermodynamic calculations predicted an adiabatic temperature of 1,425 K for the PTFE/Al2O3 stoichiometric ratio. At lower heating rates, endothermic decomposition of PTFE dominated the interaction, where PTFE decomposes into gaseous products that escape the system without interacting with alumina. The enthalpy of the PTFE–Al2O3 exothermic reaction was estimated to be −103 kJ mol−1 with activation energy of 21 kJ mol−1. This study shows that, for energetic formulation of Al–PTFE, the Al2O3 layer on the aluminum particles can exothermically react with PTFE, producing AlF3 and carbon monoxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zheng X, Curtis AD, Shaw WL, Dlott DD. Shock initiation of nano-Al + Teflon: time-resolved emission studies. J Phys Chem C. 2013;117(9):4866–75. doi:10.1021/jp312637g.

    Article  CAS  Google Scholar 

  2. Kappagantula KS, Pantoya ML. Experimentally measured thermal transport properties of aluminum–polytetrafluoroethylene nanocomposites with graphene and carbon nano tube additives. Int J Heat Mass Transf. 2012;55(4):817–24.

    Article  CAS  Google Scholar 

  3. Puszynski JA. Processing and characterization of aluminum-based nanothermites. J Therm Anal Calorim. 2009;96:677–85. doi:10.1007/s10973-009-0037-0.

    Article  CAS  Google Scholar 

  4. Firmansyah DA, Sullivan K, Lee K-S, Kim YH, Zahaf R, Zachariah MR, Lee DL. Microstructural behaviors of alumina shell and aluminum core before and after melting of aluminum nanoparticles. J Phys Chem C. 2012;116:404–11.

    Article  CAS  Google Scholar 

  5. Bazyn T, Glumac N, Krier H, Ward TS, Schoenitz M, Dreizin EL. Reflected shock ignition and combustion of aluminum and nanocomposite thermite powders. Combust Sci Technol. 2007;179:457–76.

    Article  CAS  Google Scholar 

  6. Martirosyan KS. Nanoenergetic gas-generators: principles and applications. J Mater Chem. 2011;21:9400–5.

    Article  CAS  Google Scholar 

  7. Kappagantula K, Pantoya ML, Hunt EM. Impact ignition of aluminum-teflon based energetic materials impregnated with nano-structured carbon additives. J Appl Phys. 2012;112:024902.

    Article  Google Scholar 

  8. Sippel TR, Son SF, Groven LJ. Altering reactivity of aluminum with selective inclusion of Polytetrafluoroethylene through mechanical activation. Propellants Explos Pyrotech. 2010;35:1–10.

    Google Scholar 

  9. Barclay ChH, Bozorgzadeh H, Kemnitz E et al. Reactivity of fluorinated γ-alumina and β-aluminium(III) fluoride surfaces towards hydrogen halides and tert-butyl chloride. J Chem Soc Dalton Trans. 2002;40–7.

  10. Sarbak Z. Effect of fluoride and sodium ions on structural and thermal properties of g-Al2O3. Cryst Res Technol. 1997;32(4):491–7.

    Article  CAS  Google Scholar 

  11. Pantoya ML, Dean SW. The influence of alumina passivation on nano-Al/Teflon reactions. Thermochim Acta. 2009;493:109–10.

    Article  CAS  Google Scholar 

  12. Martirosyan KS, Wang L, Vicent A, Luss D. Nanoenergetic gas-generators: design and performance. Propellants Explos Pyrotech. 2009;34:532–8.

    CAS  Google Scholar 

  13. Melhem GA, Fisher HG, Shaw DA. An advanced method for the estimation of reaction kinetics, scaleup, and pressure relief design. Proc Saf Prog. 1995;14(1):1–21.

    Article  CAS  Google Scholar 

  14. Merzhanov AG. The chemistry of self-propagating high-temperature synthesis. J Mater Chem. 2004;14:1779–86.

    Article  CAS  Google Scholar 

  15. Greiner W, Neise L, Stöcker H. Thermodynamics and statistical mechanics. New York: Springer; 1995. p. 101–2.

  16. Shiryaev AA. Thermodynamics of SHS processes: advanced approach. Int J SHS. 1995;4(4):351–62.

    CAS  Google Scholar 

  17. Dobrantz P, Crawford P. LLNL explosives handbook, properties of chemical explosives and explosive simulants (UCRL-51319). Livermore: Lawrence Livermore National Laboratory, University of California; 1972.

    Book  Google Scholar 

  18. Conesa JA, Font R. Polytetrafluoroethylene decomposition in air and nitrogen. Polym Eng Sci. 2001;41:2137–47.

    Article  CAS  Google Scholar 

  19. Brazier DW, Schwartz NV. The effect of heating rate on the thermal degradation of polybutadiene. J Appl Polym Sci. 1978;22:113–24.

    Article  CAS  Google Scholar 

  20. Ksiazczak A, Boniuk H, Cudzilo S. Thermal decomposition of PTFE in the presence of silicon, calcium silicide, ferrosilicon and iron. J Therm Anal Calorim. 2003;74:569–74.

    Article  CAS  Google Scholar 

  21. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404(1):163–76.

    Article  CAS  Google Scholar 

  22. Starink MJ. On the meaning of the impingement parameter in kinetic equations for nucleation and growth reactions. J Mater Sci. 2001;36:4433–41.

    Article  CAS  Google Scholar 

  23. Fan RH, Lu HL, Suna KN, Wangand WX, Yi XB. Kinetics of thermite reaction in Al-Fe2O3 system. Thermochim Acta. 2006;440:129–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the financial support of this research by the National Science Foundation, Grant 1138205 and HRD-1242090.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Martirosyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hobosyan, M.A., Kirakosyan, K.G., Kharatyan, S.L. et al. PTFE–Al2O3 reactive interaction at high heating rates. J Therm Anal Calorim 119, 245–251 (2015). https://doi.org/10.1007/s10973-014-4080-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4080-0

Keywords

Navigation