Skip to main content

Studies on Diels–Alder thermoresponsive networks based on ether–urethane bismaleimide functionalized poly(vinyl alcohol)

Abstract

Thermoreversible networks obtained by the Diels–Alder cycloaddition reaction of poly(vinyl furfural) with urethane bismaleimides containing polyether chain were synthesized. The formation of the networks was confirmed by attenuated total reflectance in conjunction with Fourier transform infrared spectroscopy (ATR–FTIR). The materials thermal properties were investigated using differential scanning calorimetry (DSC) and a coupling of dynamic thermogravimetry with Fourier transform infrared spectroscopy and mass spectrometry (TG–FTIR–MS) for pyrolysis behaviour under nitrogen atmosphere. A thermal decomposition mechanism of the networks and poly(vinyl furfural) was discussed via evolved gas analysis. The thermoreversibility of the networks was demonstrated by the presence of the endothermic peak characteristic to the retrodienic process on the DSC heating curves and also the appearance of the exothermic peak, due to the dienic process, on the DSC cooling curve. The dynamic contact angle and free surface energy values of the networks were determined. Measures of the heterogeneity and roughness of the surfaces suggested that the surfaces of the networks’ films are more homogenous than the initial poly(vinyl furfural) surface. Dynamic water vapour sorption studies were conducted.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Anbarasan R, Pandiarajaguru R, Prabhu R, Dhanalakshmi V, Jayalakshmi A, Dhanalakshmi B, Ulfath Nisha S, Gandhi S, Jayalakshmi T. Synthesis, characterizations, and mechanical properties of structurally modified poly(vinyl alcohol). J Appl Polym Sci. 2010;117:2059–68.

    CAS  Article  Google Scholar 

  2. Park JS, Park JW, Ruckenstein E. On the viscoelastic properties of poly(vinyl alcohol) and chemically crosslinked poly(vinyl alcohol). J Appl Polym Sci. 2001;82:1816–23.

    CAS  Article  Google Scholar 

  3. Giménez V, Mantecón A, Cádiz V. Modification of poly(vinyl alcohol) with acid chlorides and crosslinking with difunctional hardeners. J Appl Polym Sci Part A. 1996;34:925–34.

    Article  Google Scholar 

  4. Figueiredo KCS, Alves TLM, Borges CP. Poly(vinyl alcohol) films crosslinked by glutaraldehyde under mild conditions. J Appl Polym Sci. 2009;111:3074–80.

    CAS  Article  Google Scholar 

  5. Yang S, Liu G, Wang X, Song J. Electroresponsive behaviour of a sulfonated poly(vinyl alcohol) hydrogel and its application to electrodriven artificial fish. J Appl Polym Sci. 2010;117:2346–53.

    CAS  Article  Google Scholar 

  6. Gousse C, Gandini A. Acetalization of polyvinyl alcohol with furfural. Eur Polym J. 1997;33:667–71.

    CAS  Article  Google Scholar 

  7. Fernández MD, Fernández MJ, Hoces P. Poly(vinyl acetal)s containing electron-donor groups: synthesis in homogeneous phase and their thermal properties. React Funct Polym. 2008;68:39–56.

    Article  Google Scholar 

  8. Chetri P, Dass NN. Preparation of poly(vinyl butyral) with high acetalization rate. J Appl Polym Sci. 2001;81:1182–6.

    CAS  Article  Google Scholar 

  9. Eastman SA, Lesser AJ, McCarthy TJ. Quantitative poly(vinyl alcohol) modification in ionic liquids: esterification and urethanation with low surface tension producing reagents. Macromolecules. 2010;43:4584–8.

    CAS  Article  Google Scholar 

  10. Cavusoglu J, Kusefoğlu SH. Oleophilic modification of poly(vinyl alcohol) films by functionalized soybean oil triglycerides. J Appl Polym Sci. 2011;119:2431–8.

    CAS  Article  Google Scholar 

  11. David G, Ortega E, Chougrani K, Manseri A, Boutevin B. Grafting of phosphonate groups onto PVA by acetalyzation. evaluation of the anti-corrosive properties for the acetalyzed PVA coatings. React Funct Polym. 2011;71:599–606.

    CAS  Article  Google Scholar 

  12. Sauca S, Giamberini M, Reina JA. Flame retardant phosphorous—containing polymers obtained by chemically modifying poly(vinyl alcohol). Polym Degrad Stab. 2013;98:453–63.

    CAS  Article  Google Scholar 

  13. Gaina C, Ursache O, Gaina V, Buruiana E, Ionita D. Investigation on the thermal properties of new thermo-reversible networks based on poly(vinyl furfural) and multifunctional maleimide compounds. Express Polym Lett. 2012;6:129–41.

    CAS  Article  Google Scholar 

  14. Sanyal A. Diels–Alder cycloaddition–cycloreversion: a powerful combo in materials design. Macromol Chem Phys. 2010;211:1417–25.

    CAS  Article  Google Scholar 

  15. Hizal G, Tunca U, Sanyal A. Discrete macromolecular constructs via the Diels–Alder “Click” reaction. J Appl Polym Sci Part A. 2011;49:4103–20.

    CAS  Google Scholar 

  16. Atilla Tasdelen M. Diels–Alder “Click” reactions: recent applications in polymer and material science. Polym Chem. 2011;2:2133–45.

    Article  Google Scholar 

  17. Zhou J, Guimard NK, Inglis AJ, Namazian M, Lin CY, Coote ML, Spyrou E, Hilf S, Schmidt FG, Barner-Kowollik C. Thermally reversible Diels–Alder-based polymerization: an experimental and theoretical assessment. Polym Chem. 2012;3:628–39.

    CAS  Article  Google Scholar 

  18. Toncelli C, De Reus DC, Picchioni F, Broekhuis AA. Properties of reversible Diels–Alder furan/maleimide polymer networks as function of crosslink density. Macromol Chem Phys. 2012;213:157–65.

    CAS  Article  Google Scholar 

  19. Gandini A. The furan/maleimide Diels–Alder reaction: a versatile click–unclick tool in macromolecular synthesis. Prog Polym Sci. 2013;38:1–28.

    CAS  Article  Google Scholar 

  20. Gandini A, Coelho D, Silvestre AJD. Reversible click chemistry at the service of macromolecular materials. Part 1: kinetics of the Diels–Alder reaction applied to furan–maleimide model compounds and linear polymerizations. Eur Polym J. 2008;44:4029–36.

    CAS  Article  Google Scholar 

  21. Kavitha AA, Singha NK. “Click chemistry” in tailor-made polymethacrylates bearing reactive furfuryl functionality: a new class of self-healing polymeric material. Appl Mater Interface. 2009;1:1427–36.

    CAS  Article  Google Scholar 

  22. Ishida K, Nishiyama Y, Michimura Y, Oya N, Yoshie N. Hard–soft conversion in network polymers: effect of molecular weight of crystallizable prepolymer. Macromolecules. 2010;43:1011–5.

    CAS  Article  Google Scholar 

  23. Ishida K, Weibel V, Yoshie N. Substituent effect on structure and physical properties of semicrystalline Diels–Alder network polymers. Polymer. 2011;52:2877–82.

    CAS  Article  Google Scholar 

  24. Aumsuwan N, Urban MW. Reversible releasing of arms from star morphology polymers. Polymer. 2009;59:33–6.

    Article  Google Scholar 

  25. Swanson JP, Rozvadovsky S, Seppala JE, Mackay ME, Jensen RE, Costanzo PJ. Development of polymeric phase change materials on the basis of Diels–Alder chemistry. Macromolecules. 2010;43:6135–41.

    CAS  Article  Google Scholar 

  26. Scheltjens G, Brancart J, De Graeve I, Van Mele B, Terryn H, Van Assche G. Self-healing property characterization of reversible thermoset coatings. J Therm Anal Calorim. 2011;105:805–9.

    CAS  Article  Google Scholar 

  27. Marref M, Mignard N, Jegat C, Taha M, Belbachir M, Meghabar R. Epoxy-amine based thermoresponsive networks designed by Diels–Alder reactions. Polym Int. 2013;62:87–98.

    CAS  Article  Google Scholar 

  28. Wei HL, Yang Z, Chen Y, Chu HJ, Zhu J, Li ZC. Characterisation of N-vinyl-2-pyrrolidone-based hydrogels prepared by a Diels–Alder click reaction in water. Eur Polym J. 2010;46:1032–9.

    CAS  Article  Google Scholar 

  29. Wei HL, Yang J, Chu HJ, Yang Z, Ma CC, Yao K. Diels–Alder reaction in water for the straightforward preparation of thermoresponsive hydrogels. J Appl Polym Sci. 2011;120:974–80.

    CAS  Article  Google Scholar 

  30. Mcelhanon JR, Russick EM, Wheeler DR, Loy DA, Aubert JH. Removable foams based on an epoxy resin incorporating reversible Diels–Alder adducts. J Appl Polym Sci. 2002;85:1496–502.

    CAS  Article  Google Scholar 

  31. James HA. Thermally removable epoxy adhesives incorporating thermally reversible Diels–Alder adducts. J Adhesion. 2003;79:609–16.

    Article  Google Scholar 

  32. Defize T, Riva R, Thomassin JM, Jérôme C, Alexandre M. Thermo-reversible reactions for the preparation of smart materials: recyclable covalently-crosslinked shape memory polymers. Macromol Symp. 2011;309–310:154–61.

    Article  Google Scholar 

  33. Defize T, Riva R, Jérôme C, Alexandre M. Multifunctional poly(ε-caprolactone)-forming networks by Diels–Alder cycloaddition: effect of the adduct on the shape-memory properties. Macromol Chem Phys. 2012;213:187–97.

    CAS  Article  Google Scholar 

  34. Kavitha AA, Singha NK. A tailor-made polymethacrylate bearing a reactive diene in reversible Diels–Alder reaction. J Polym Sci Part A. 2007;45:4441–9.

    CAS  Article  Google Scholar 

  35. Kavitha AA, Singha NK. Atom-transfer radical copolymerization of furfuryl methacrylate (FMA) and methyl methacrylate (MMA): a thermally-amendable copolymer. Macromol Chem Phys. 2007;208:2569–77.

    CAS  Article  Google Scholar 

  36. Goiti E, Heatley F, Huglin MB, Rego JM. Kinetic aspects of the Diels–Alder reaction between poly(styrene-co-furfuryl methacrylate) and bismaleimide. Eur Polym J. 2004;40:1451–60.

    CAS  Article  Google Scholar 

  37. Liu YL, Chen YW. Thermally reversible cross-linked polyamides with high toughness and self-repairing ability from maleimide- and furan-functionalized aromatic polyamides. Macromol Chem Phys. 2007;208:224–32.

    CAS  Article  Google Scholar 

  38. Liu YL, Hsieh CY, Chen YW. Thermally reversible cross-linked polyamides and thermo-responsive gels by means of Diels–Alder reaction. Polymer. 2006;47:2581–6.

    CAS  Article  Google Scholar 

  39. Gaina C, Ursache O, Gaina V, Varganici CD. Thermally reversible cross-linked poly(ether–urethane)s. Express Polym Lett. 2013;7:636–50.

    CAS  Article  Google Scholar 

  40. Okhay N, Mignard N, Jegat C, Taha M. Diels–Alder thermoresponsive networks based on high maleimide–functionalized urethane prepolymers. Des Monom Polym. 2013;16:475–87.

    CAS  Article  Google Scholar 

  41. Varganici CD, Ursache O, Gaina C, Gaina V, Rosu D, Simionescu BC. Synthesis and characterization of a new thermoreversible polyurethane network. Ind Eng Chem Res. 2013;52:5287–95.

    CAS  Article  Google Scholar 

  42. Gaina C, Ursache O, Gaina V, Buruiana E. Novel thermally reversible epoxy–urethane networks. Des Monom Polym. 2012;15:63–73.

    CAS  Article  Google Scholar 

  43. Varganici CD, Paduraru OM, Rosu L, Rosu D, Simionescu BC. Thermal stability of some cryogels based on poly(vinyl alcohol) and cellulose. J Anal Appl Pyrol. 2013;104:77–83.

    CAS  Article  Google Scholar 

  44. Shaulov AY, Lomakin SM, Zarkhina TS, Rakhimkulov AD, Shilkina NG, Muravlev YB, Berlin AA. Carbonization of poly(vinyl alcohol) in blends with boron polyoxide. Phys Chem. 2005;403:772–6.

    Google Scholar 

  45. Rosu D, Tudorachi N, Rosu L. Investigations on the thermal stability of a MDI based polyurethane elastomer. J Anal Appl Pyrol. 2010;89:152–8.

    CAS  Article  Google Scholar 

  46. Patel P, Hull TR, McCabe RW, Flath D, Grasmeder J, Percy M. Mechanism of thermal decomposition of poly(ether ether ketone) (PEEK) from a review of decomposition studies. Polym Degrad Stab. 2010;95:709–18.

    CAS  Article  Google Scholar 

  47. Varganici CD, Durdureanu-Angheluta A, Rosu D, Pinteala M, Simionescu BC. Thermal degradation of magnetite nanoparticles with hydrophilic shell. J Anal Appl Pyrol. 2012;96:63–8.

    CAS  Article  Google Scholar 

  48. Varganici CD, Ursache O, Gaina C, Gaina V, Simionescu BC. Studies on new hybrid materials prepared by both Diels–Alder and Michael addition reactions. J Therm Anal Calorim. 2013;111(2):1561–70.

    CAS  Article  Google Scholar 

  49. Hamciuc E, Hamciuc C, Cazacu M. Comparative evaluation of some properties of two poly(ether-imide) thin films with/without fluorine in the structure. Rev Roum Chim. 2009;54:1007–13.

    CAS  Google Scholar 

  50. Ng EP, Mintova S. Nanoporous materials with enhanced hydrophilicity and high water sorption capacity. Microporous Mesoporous Mater. 2008;114:1–26.

    CAS  Article  Google Scholar 

  51. Brunauer S, Deming LS, Deming WE, Teller E. On a theory of the van der Waals adsorption of gases. J Am Chem Soc. 1940;62:1723–32.

    CAS  Article  Google Scholar 

  52. Bankauskaite A, Baltakys K, Mezinskis G. Modified hydrotalcites application as precursors for (Na, K)Mg/Al spinel-type compounds formation. J Therm Anal Calorim. 2014;. doi:10.1007/s10973-014-3737-z.

    Google Scholar 

  53. Rangel-Rivera P, Rangel-Porras G, Pfeiffer-Perea H, Lima-Muñoz E. Thermoanalytical study of acid-treated clay containing amino acid immobilized on its surface. J Therm Anal Calorim. 2014;115:1359–69.

    CAS  Article  Google Scholar 

  54. Charmas B. Adsorption and calorimetric studies of hydrothermally modified carbosils. J Therm Anal Calorim. 2014;115:1395–405.

    CAS  Article  Google Scholar 

  55. Athanasiou A, Mitsionis A, Skouras G, Todorova N, Trapalis C, Vaimakis T. Thermogravimetric study of the surfactant–diethanolamine–titanium isopropoxide system behavior. J Therm Anal Calorim. 2014;116:15–25.

    CAS  Article  Google Scholar 

  56. Ledesma B, Román S, Álvarez-Murillo A, Sabio E, González–García CM. Fundamental study on the thermal regeneration stages of exhausted activated carbons: kinetics. J Therm Anal Calorim. 2014;115:537–43.

    CAS  Article  Google Scholar 

  57. Staszczuk P, Rycyk M. Studies of adsorption and total heterogeneity properties of pure and modified carbon nanotube surfaces. J Therm Anal Calorim. 2013;114:1125–33.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Two of the authors (C-D.V. and D.R.) acknowledge the financial support of a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, Project Number PN-II-ID-PCE-2011-3-0187.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian-Dragos Varganici.

Additional information

Paper dedicated to the 65th anniversary of ‘‘Petru Poni’’ Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ursache, O., Gaina, C., Gaina, V. et al. Studies on Diels–Alder thermoresponsive networks based on ether–urethane bismaleimide functionalized poly(vinyl alcohol). J Therm Anal Calorim 118, 1471–1481 (2014). https://doi.org/10.1007/s10973-014-4041-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4041-7

Keywords

  • Retro-Diels–Alder
  • Thermal properties
  • Pyrolysis behaviour
  • Evolved gas analysis
  • Contact angle
  • Water vapour sorption